Solitons in Femtosecond Lasers

  • Michel Piché
  • Jean-François Cormier
  • Allaoua Belahlou
  • Isabelle Richard
  • Xiaonong Zhu
  • Simon Deblois


We have developed an analytical model to describe the steady-state operation of self-mode-locked lasers emitting pulses of very short duration. The model is based on the generalized nonlinear Schrödinger equation with dispersive terms up to fourth-order; we argue that a rigorous derivation of that equation cannot proceed through the slowly-varying envelope approximation. We show that the generalized nonlinear Schrödinger equation that includes second- and fourth-order dispersion has an analytical solution that takes the form of a bright soliton; the temporal profile of the field envelope of that solution is given as the square of a hyperbolic secant. The solution is stable in presence of a weak third-order dispersion. We have extended the analysis to include the effects of spectral filtering by the gain medium and laser mirrors, and the nonlinear gain associated to Kerr lensing; we then predict the existence of chirped solitary waves for which we have found an analytical expression. The predictions of the model are in a satisfactory agreement with the measurements reported by different groups on lasers emitting pulses of duration below 20 fs. We then describe our own experimental results obtained when second-order dispersion was progressively eliminated in a self-mode-locked Tirsapphire laser; we observed that, due to the residual third-order dispersion, the laser tended to produce short pulses with asymmetric spectral distributions.


Optical Soliton Bright Soliton Pulse Spectrum Nonlinear Schrodinger Equation Nonlinear Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).CrossRefGoogle Scholar
  2. 2.
    G. P. Agrawal, “ Nonlinear Fiber Optics ”, second edition, Academic Press, New York (1995).Google Scholar
  3. 3.
    L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).CrossRefGoogle Scholar
  4. 4.
    R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, Opt. Lett. 8, 186 (1983).CrossRefGoogle Scholar
  5. 5.
    F. Salin, P. Grangier, G. Roger, and A. Brun, Phys. Rev. Lett. 56, 1132 (1986).CrossRefGoogle Scholar
  6. 6.
    A. Barthelemy, S. Maneuf, and C. Froehly, Opt. Comm. 55, 201 (1985).CrossRefGoogle Scholar
  7. 7.
    J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Laird, E. M. Vogel, and P. W. E. Smith, Opt. Lett. 15, 471 (1990).CrossRefGoogle Scholar
  8. 8.
    K. J. Blow, N. J. Doran, and E. Cummins, Opt. Comm. 48, 181 (1983).CrossRefGoogle Scholar
  9. 9.
    Y. Kodama and A. Hasegawa, IEEE J. Quantum Electron., QE-23, 510 (1987).CrossRefGoogle Scholar
  10. 10.
    P. K. Wai, H. H. Chen, and Y. C. Lee, Phys. Rev. A-41, 426 (1990).CrossRefGoogle Scholar
  11. 11.
    M. Klauder, E. W. Laedke, K. H. Spatschek, and S. K. Turitsyn, Phys. Rev. A-47, 3844 (1993).Google Scholar
  12. 12.
    J. P. Zhou, G. Taft, C. P. Huang, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 19, 1149 (1994).CrossRefGoogle Scholar
  13. 13.
    A. Stingl, C. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 19, 204 (1994).CrossRefGoogle Scholar
  14. 14.
    B. E. Lemoff and C. P. J. Barty, Opt. Lett. 18, 57 (1993).CrossRefGoogle Scholar
  15. 15.
    I.P. Christov, M. M. Murnane, H. C. Kapteyn, J. P. Zhou, and C. P. Huang, Opt. Lett. 19, 1465 (1994).CrossRefGoogle Scholar
  16. 16.
    P. V. Mamyshev and S. V. Chernikov, Opt. Lett. 15, 1076 (1990).CrossRefGoogle Scholar
  17. 17.
    X. Zhu, J.-F. Cormier, and M. Piché, J. Mod. Opt. 43, 1701 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Piché, J.-F. Cormier, and X. Zhu, Opt. Lett. 21, 845 (1996).CrossRefGoogle Scholar
  19. 19.
    M. Karlsson and A. Höök, Opt. Comm. 104, 303 (1994).CrossRefGoogle Scholar
  20. 20.
    N. N. Akhmediev, A. V. Buryak, and M. Karlsson, Opt. Comm. 110, 540 (1994).CrossRefGoogle Scholar
  21. 21.
    A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 20, 602 (1995).CrossRefGoogle Scholar
  22. 22.
    A. Kasper and K. J. Witte, Opt. Lett. 21, 360 (1996).CrossRefGoogle Scholar
  23. 23.
    L. Xu, Ch. Spielmann, F. Krausz, and R. Szipöcs, Opt. Lett. 21, 1259 (1996).CrossRefGoogle Scholar
  24. 24.
    P. F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A. J. Schmidt, Opt. Lett. 18, 54 (1993).CrossRefGoogle Scholar
  25. 25.
    A. Höök and M. Karlsson, Opt. Lett. 18, 1388 (1993).CrossRefGoogle Scholar
  26. 26.
    M. Piché and F. Salin, Opt. Lett. 18, 1041 (1993).CrossRefGoogle Scholar
  27. 27.
    P. A. Bélanger, L. Gagnon, and C. Paré, Opt. Lett. 14, 943 (1989).CrossRefGoogle Scholar
  28. 28.
    K. H. Spatschek, S. K. Turitsyn, and Y. S. Kivshar, Phys. Lett. A 204, 269 (1995).CrossRefGoogle Scholar
  29. 29.
    I. Gabitov and S. K. Turitsyn, JETP Lett. 63, 861 (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Michel Piché
    • 1
  • Jean-François Cormier
    • 1
  • Allaoua Belahlou
    • 1
  • Isabelle Richard
    • 1
  • Xiaonong Zhu
    • 1
  • Simon Deblois
    • 1
  1. 1.Département de physique, Centre d’optique, photonique et laserUniversité LavalCité UniversitaireCanada

Personalised recommendations