Advertisement

Hyper-Spectra Space-Based Infrared Image Restoration and Composition

  • George A. Lampropoulos
  • James F. Boulter

Abstract

In this paper we present methods to analyze, restore and compose multi-sensor hyper (or multi)-spectra images. For the composite multi-sensor and/or hyper (or multi)-spectra image the Karhunen-Loève (K-L) and Gram-Schmidt (G-S) orthogonalization techniques are used in combination with blur estimation and 3-D restoration methods. For the motion estimation or target detection in a set of two frames of the same spectral band the G-S orthogonalization is used. Results from real data from satellite images are presented.

Keywords

Spectral Band Spectrum Image Restoration Method IEEE Signal Processing Magazine Orthogonal Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Preston, T. Bergman, R. Gorenflo, D. Hermann, E. Kopala, T. Kuzma, L. Lazofson, and R. Orkis, Development of a field-portable imaging system for scene classification using multispectral data fusion algorithms, IEEE Aerospace and Electronic Systems Magazine, 9, 9, pp. 13–19, (Sept. 1994).CrossRefGoogle Scholar
  2. 2.
    J.A. Saghri, A.G. Tescher, and J.T. Reagan, Practical transform coding of multispectra imagery, IEEE Signal Processing Magazine, pp.32–43 (Jan. 1995).Google Scholar
  3. 3.
    T.A. Wilson, S.K. Rogers and L.R. Myers, Perceptual-band hyper-spectral image fusion using multiresolution analysis, SPIE Journal on Optical Engineering, Vol. 34, No. II, pp. 3154–3164, (1995).CrossRefGoogle Scholar
  4. 4.
    V.D. Vaughn and T.S. Wilkinson, System considerations for multispectra image compression designs, IEEE Signal Processing Magazine, 10, 1, pp. 19–31, (Jan. 1995).CrossRefGoogle Scholar
  5. 5.
    G.A. Lampropoulos and J.F. Boulter, Filtering of moving targets using SBIR sequential frames, IEEE Transactions on Aerospace and Electronic Systems, 31, 4, (Oct. 1995).CrossRefGoogle Scholar
  6. 6.
    G.H. Golub and C.F. Van Loan. Matrix Computations, Johns Hopkins University Press, Baltimore (1983).zbMATHGoogle Scholar
  7. 7.
    D. Hall. Mathematical Techniques in Multisensor Data Fusion, Artech House, Boston (1992).Google Scholar
  8. 8.
    G.A. Lampropoulos and J.F. Boulter, Three-dimensional multi-frame/multi-spectra space-based infrared restoration, Proc. of the SPIE on Infrared Technology XX, Vol. 2269, pp. 72–92 (July 1994).CrossRefGoogle Scholar
  9. 9.
    G.A. Lampropoulos and J.F. Boulter, Multispectra infrared sequential image processing for point target detection, Proc. of the SPIE on Infrared Spaceborne Remote Sension III, Vol. 2553, pp. 158–170 (July 1995).CrossRefGoogle Scholar
  10. 10.
    V. Anastassopoulos and G.A. Lampropoulos, Statistical infrared image analysis, Proc. of the SPIE on Infrared Spaceborne Remote Sension III, Vol. 2553, pp. 171–181 (July 1995).CrossRefGoogle Scholar
  11. 11.
    G.A. Lampropoulos and J.F. Boulter, 3-D blur estimation and restoration of sequential space-based infrared images, in: Applications of Photonic Technology, G.A. Lampropoulos, J. Chrostowski and R.M. Measures, eds., Plenum Press (1995).CrossRefGoogle Scholar
  12. 12.
    G.A. Lampropoulos and J. F. Boulter, Space-Based Multisensor Multispectra Nonstationary Image Analysis, Proc. Of the SPIE on Infrared Technology and Applications XXII, Vol. 2755, pp. 256–264 (1996).CrossRefGoogle Scholar
  13. 13.
    J.F. Boulter, Processing for space-based electro-optical surveillance, DREV Technical Notes, File No: 37DB-05E05-II (July 1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • George A. Lampropoulos
    • 1
  • James F. Boulter
    • 2
  1. 1.A.U.G. Signals Ltd.TorontoCanada
  2. 2.Defence Research Establishment ValcartierCourceletteCanada

Personalised recommendations