A Unique Capability of Quantum Well Infrared Photodetectors: Multicolor and Multiband Response

  • H. C. Liu
  • J. Li
  • M. Buchanan
  • Z. R. Wasilewski
  • P. H. Wilson
  • J. G. Simmons


Quantum well infrared photodetectors (QWIPs)[1] have recently attracted a great deal of attention. Although the absolute performance[2] of single element detectors is somewhat inferior than the standard HgCdTe technology for the long wavelength infrared (IR), advantages of QWIP approach based on GaAs and Si multiple quantum wells (MQWs) are obvious, including, e.g., mature materials and processing, and extremely uniform and low defect densities suitable for large array fabrication. Moreover we believe that with the advances in our understanding of the physics involved, the QWIP’s performance related, e.g, the dark current and operating temperature will be improved. Another distinct feature of the QWIP approach is the capability of producing multicolor and multiband detectors.


Differential Resistance Response Color Intersubband Transition Infrared Photodetector Voltage Tunability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. F. Levine, J. Appl. Phys. 74, R1 (1993).CrossRefGoogle Scholar
  2. [2]
    H. C. Liu, Appl. Phys. Lett. 61, 2703 (1992).CrossRefGoogle Scholar
  3. [3]
    A. Köck, E. Gornik, G. Abstreiter, G. Böhm, M. Walther, and G. Weimann, Appl. Phys. Lett. 60, 2011 (1992).CrossRefGoogle Scholar
  4. [4]
    I. Gravé, A. Shakouri, N. Kruze, and A. Yariv, Appl. Phys. Lett. 60, 2362 (1992).CrossRefGoogle Scholar
  5. [5]
    K. L. Tsai, K. H. Chang, C. P. Lee, K. F. Huang, J. S. Tsang, and H. R. Chen, Appl. Phys. Lett. 62, 3504 (1993).CrossRefGoogle Scholar
  6. [6]
    L. Esaki and L. L. Chang, Phys. Rev. Lett. 33, 495 (1974).CrossRefGoogle Scholar
  7. [7]
    K. K. Choi, B. F. Levine, R. J. Malik, J. Walker, and C. G. Bethea, Phys. Rev. B 35, 4172 (1987).CrossRefGoogle Scholar
  8. [8]
    H. C. Liu, J. Li, M. Buchanan, Z. R. Wasilewski, and J. G. Simmons, Phys. Rev. B 48, 1951 (1993).CrossRefGoogle Scholar
  9. [9]
    K. K. Choi, B. F. Levine, C. G. Bethea, J. Walker, and R. J. Malik, Phys. Rev. B 39, 8029 (1989).CrossRefGoogle Scholar
  10. [10]
    E. Martinet, E. Rosencher, F. Luc, Ph. Bois, E. Costard, and S. Delaitre, Appl. Phys. Lett. 61, 246 (1992).CrossRefGoogle Scholar
  11. [11]
    K. Kheng, M. Ramsteiner, H. Schneider, J. D. Ralston, F. Fuchs, and P. Koidl, Appl. Phys. Lett. 61, 666 (1992).CrossRefGoogle Scholar
  12. [12]
    Y. H. Wang, S. S. Li, and P. Ho, Appl. Phys. Lett. 62, 621 (1993).CrossRefGoogle Scholar
  13. [13]
    H. C. Liu, P. H. Wilson, M. Lamm, A. G. Steele, Z. R. Wasilewski, J. Li, M. Buchanan, and J. G. Simmons, Appl. Phys. Lett. 64, 475 (1994).CrossRefGoogle Scholar
  14. [14]
    H. C. Liu, J. Li, J. R. Thompson, Z. R. Wasilewski, M. Buchanan, and J. G. Simmons, IEEE Elect. Dev. Lett. 14, 566 (1993).CrossRefGoogle Scholar
  15. [15]
    H. C. Liu, J. Li, Z. R. Wasilewski, M. Buchanan, P. H. Wilson, M. Lamm, and J. G. Simmons, A three-color voltage tunable quantum well intersubband photodetector for long wavelength infrared, in Quantum Well Intersubband Transition Physics and Devices, Kluwer, Dordrecht, Netherlands, 1994, edited by H. C. Liu, B. F. Levine, and J. F. Andersson.CrossRefGoogle Scholar
  16. [16]
    H. C. Liu, Z. R. Wasilewski, M. Buchanan, and H. Chu, Appl. Phys. Lett. 63, 761 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. C. Liu
    • 1
  • J. Li
    • 1
  • M. Buchanan
    • 1
  • Z. R. Wasilewski
    • 1
  • P. H. Wilson
    • 2
  • J. G. Simmons
    • 2
  1. 1.Institute for Microstructural SciencesNational Research CouncilOttawaCanada
  2. 2.Centre for Electrophotonic Materials and DevicesMcMaster UniversityHamiltonCanada

Personalised recommendations