Implementation of Integrated Optic Systems with Active Waveguides, Passive Waveguides, and Optical Fibers

  • C. L. Balestra


We currently stand at the threshold of a world society served and linked together by light. Fiber optic telecommunications is already a reality in most of the industrialized sector. Due to the high volume telephone communications market, optical fiber and associated optical sources and detectors are now off-the-shelf commodities. But telephone communications, now largely made up of voice and data transfer, is merely the embiyo. There is a myriad of other practical, commercial applications for optical devices and systems. The scope of these applications will be determined by the economics, as well as ergonomics, of their implementation.

This report provides an overview of the implementation of guided-wave integrated optics systems in terms of constituent components. The emphasis is on semiconductor waveguide devices, which endow these systems with reconiigurability and thus make them active. We present our view of the performance limits and current technology challenges confronting the practical implementation of active waveguide devices and subsystems. We discuss applications of the active waveguide device concept to higher levels of network integration for space, avionics, and sensor applications. The roles of passive waveguides cast on a single substrate and optical fibers—the ultimate link for practically all guided wave optical systems—are also discussed.


Semiconductor Optical Amplifier Optical Amplifier Ridge Waveguide Coupling Loss Multimode Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Probst, D.K., Perrymore, L.G., Johnson, B.C., Blackwell, R.J., Priest, J.A., and Balestra, C.L., Demonstration of an integrated, active 4 x 4 photonic crossbar, IEEE Photonics Technol. Lett. 4:1139 (1992).CrossRefGoogle Scholar
  2. 2.
    Balestra, C.L., Blackwell, R.J., B.C. Johnson, B.C., and Perrymore, L.G., Monolithic semiconductor active waveguide optical crossbar switch, SPIE Meeting on Photonics for Space 1953:18 (1993).Google Scholar
  3. 3.
    Rice, R.R., Zediker, M.S., Balestra, C.L., Priest, J.A., Monolithic active waveguide optical crossbar switch, US Patent No. 5,283,844 (1994).Google Scholar
  4. 4.
    Gustavsson, M., Lagerstrom, B. Thylen, L., Janson, M., Lundgren, L. Morner, A.C., Rask, M., Stoltz, B., Monolithically integrated 4 x 4 InGaAsP/InP laser amplifier gate switch arrays, Electron Lett., 28:2223 (1992).CrossRefGoogle Scholar
  5. 5.
    Gustavsson, M., Janson, M., Lundgren, L., Digital transmission experiment with monolithic 4 x 4 InGaAsP/InP laser amplifier gate switch array, Electron. Lett. 29:1083 (1993).CrossRefGoogle Scholar
  6. 6.
    Burton, J.D., Fiddyment, P.J., Robertson, M.J., and Sully, P., Monolithic InGaAsP-InP laser amplifier gate switch matrix, IEEE J. Quantum Electron. 29:2023 (1993).CrossRefGoogle Scholar
  7. 7.
    Kirihara, T., Ogawa, M., Inoue, H., Kodera, H., Lossless and low-crosstalk characteristics in an InP-based 4 x 4 optical switch with integrated single-stage optical amplifiers, IEEE Photon. Technol. Lett. 6:218 (1994).CrossRefGoogle Scholar
  8. 8.
    Kirihara, T., Ogawa, M., Tsuji, Inoue, H., High-speed signal-transmission performance in a lossless 4 x 4 optical switch for photonic switching, OFC ′94 Technical Digest 4:55 (1994).Google Scholar
  9. 9.
    Newkirk, M.A., Miller, B.I., Koren, U., Young, M.G., Chien, M., Jopson, R.M., and Burrus, C.A., 1.5 µm multiquantum-well semiconductor optical amplifier with tensile and compressively strained wells for polarization-independent gain, IEEE Photon. Technol. Lett 4:406 (1993).CrossRefGoogle Scholar
  10. 10.
    Dubovitsky, S., Mathus, A., Steier, W.H., Dapkus, P.D, Gain saturation properties of a polarization insensitive semiconductor amplifier implemented with tensile and compressive strain quantum wells, IEEE Photon. Technol. Lett. 6:176 (1994).CrossRefGoogle Scholar
  11. 11.
    Olsson, N.A., Kazarinov, R.F., Nordland, W.A., Henry, C.H., Oberg, M.G., White, H.G., Garbinski, P.A., and Savage, A., Polarization-independent optical amplifier with buried facets, Electron. Lett. 25:1048 (1989).CrossRefGoogle Scholar
  12. 12.
    Booth, B.L., Optical interconnection polymers, in: ”Polymers for lightwave and Integrated Optics,“ L. Hornak, ed., Marcel Dekker, New York (1992).Google Scholar
  13. 13.
    Krchnavek, R.R., Lalk, G.R., Denton, R., Photo-polymerized acrylic waveguides for optical interconnects, Mat. Res. Soc. Symp. Proc. 228:95 (1992).CrossRefGoogle Scholar
  14. 14.
    Henry, C.H., Blonder, G.E., Kazarinov, R.F., Glass waveguides on silicon for hybrid optical packaging, J. Lightwave Technol. 7:1530 (1989).CrossRefGoogle Scholar
  15. 15.
    Koch, T.L., Koren, U., Semiconductor photonic integrated circuits, IEEE J. Quantum Electron., 27:641 (1991).CrossRefGoogle Scholar
  16. 16.
    Herrick, R.J., Beam propagation modeling of intersecting rib waveguides, McDonnell Douglas Corporation, Unpublished (1988).Google Scholar
  17. 17.
    Spanke, R.A., Architectures for guided-wave optical space switching systems, IEEE Commun. Mag. 25:42 (1987).CrossRefGoogle Scholar
  18. 18.
    Kalman, R.F., Kazovxky, L.G., Goodman, J.W., Space division switches based on semiconductor optical amplifiers, IEEE Photonics Technol. Lett. 4:1048 (1992).CrossRefGoogle Scholar
  19. 19.
    Saitoh, T. and Mukai, T., 1.5 µm GaInAsP traveling-wave semiconductor laser amplifier, IEEE J. Quantum Electron. QE-23:1010 (1987).CrossRefGoogle Scholar
  20. 20.
    Stevens, P.J. and Mukai, T., Predicted performance of quantum-well GaAs(GaAl)As optical amplifiers, IEEE J. Quantum Electron. QE-26:1920 (1990).CrossRefGoogle Scholar
  21. 21.
    Balestra, C.L., Atkinson, T.L. , Johnson, B.C., and Perrymore, L.G., Semiconductor active waveguide reconfigurable optical interconnect devices and networks, SPIE Meeting on Photonics for Space Environments 1953:19 (1993).Google Scholar
  22. 22.
    Walpole, J.N., Kintzer, E.S., Chinn, S.R., Wang, C.A., and Missaggia, L.J., High-power strained-layer InGaAs/A1GaAs tapered traveling wave amplifier, Appl. Phys. Lett. 61:740 (1992).CrossRefGoogle Scholar
  23. 23.
    Crofts, D., Balestra, C., Dreisewerd, D., Lambert, S., Rice, R., Simmons, S., Current capabilities and photonics trends in optical intersatellite links, AIAA - 1 Sth Satellite Communications Conference (1993).Google Scholar
  24. 24.
    Advanced systems avionics (ASA) technology and applications assessment (Pave Pace), Final Report, Contract No. F33615–89-C-1110, Rep. MDC 91B0643, (1992).Google Scholar
  25. 25.
    Haake, J.M., Fairles, R.T., Development of a fiberoptic interferometer demodulation/multiplexing system using an active 1 x 10 photonic polarization preserving fiber coupler, SPIE Conference on Smart Structures 1918:54 (1993).Google Scholar
  26. 26.
    Herrick, R.W., Sabo, L.G., Levy, J.L., Novel method for measuring and analyzing surface roughness on semiconductor laser etched facets, J. Va. Sci Technol. B9:2778 (1991).CrossRefGoogle Scholar
  27. 27.
    Liau, Z.L. and Zeiger, H.J., Surface-energy-induced mass-transport phenomenon in annealing of etched compound semiconductor structures: theoretical modeling and experimental confirmation, J. Appl. Phys., 67:2434 (1990).CrossRefGoogle Scholar
  28. 28.
    No, K.H., Blackwell, R.J., Herrick, R.W., Levy, J.L., Monolithic integration of an amplifier and a phase modulator fabricated in a GRINSCH-SQW structure by placing the junction below the quantum well, IEEE Photon. Technol. Lett. 5:990 (1993).CrossRefGoogle Scholar
  29. 29.
    Presby, H.M., Giles, C.R., Asymmetric fiber microlenses for efficient coupling to elliptical laser beams, IEEE Photon. Technol. Lett. 5:184 (1993).CrossRefGoogle Scholar
  30. 30.
    Yamada, H., Hanafusa, H., Mode shape convertor produced by the thermal diffusion of different dopants, IEEE Photon. Technol. Lett. 6:531 (1994).CrossRefGoogle Scholar
  31. 31.
    Koch, T.L., Koren, U., Eisenstein, G., Young, M.G., Oron, M., Giles, C.R., Miller, B.I., Tapered waveguide InGaAs/InGaAsP multiple-quantum-well lasers, IEEE Photon. Technol. Lett. 2:88 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • C. L. Balestra
    • 1
  1. 1.McDonnell Douglas Aerospace - WestSt. LouisUSA

Personalised recommendations