Advertisement

Laser-Assisted Multicolor Photoionization of Atoms with Higher Harmonics

  • Valérie Véniard
  • Richard Taïeb
  • Alfred Maquet

Abstract

The recently observed generation, by samples of atomic rare gas, of high-order harmonics of the fundamental frequency of an infrared laser opens the possibility to have at am’ s disposal a table-top source of coherent and pulsed VUV, (or even soft X-ray) radiation1–3. The main motivation of the present paper is to address the possibility to perform a new class of (N+1)-color (N≥1) photoionization experiments, which fully exploit the unique characteristics of high-order harmonic radiation. Among these characteristics is the fact that the harmonic emission spectrum is constituted of coherent UV radiation lines with equally spaced frequencies and comparable intensities, the spacing between two lines being twice the frequency ωL of the infrared laser which has been used to generate the harmonics. The idea is to expose simultaneously an atomic target to the fields of a high order harmonic radiation with frequency ωH and the fundamental of the laser ωL. Then, if the harmonic order is high enough, i.e. ωH >EI, where EI is the ionization energy of the atom, Laser-Assisted-Single-Photon-Ionization (LASPI) can be observed. Experimental observations have already been reported4,5.

Keywords

Laser Intensity Photoelectron Spectrum Infrared Laser Harmonic Radiation Photoelectron Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L’Huillier, L. A. Lompré, G. Mainfray and C. Manus in Atoms in Strong Fields, edited by M. Gavrila, Adv. Atom. Molec. Opt. Phys. Suppl. 1, Acad. Press, San Diego, p 139 (1992).Google Scholar
  2. 2.
    R. Haight and D. R. Peale, Phys. Rev. Lett. 70, 3979 (1993);ADSCrossRefGoogle Scholar
  3. R. Haight and P. F. Seidler, Appl. Phys. Lett. 65, 517 (1994).ADSCrossRefGoogle Scholar
  4. 3.
    J. Larsson, E. Mevel, R. Zerne, A. L’Huillier, C-G. W ahlström and S. Svanberg, J. Phys. B 28 L51 (1995).CrossRefGoogle Scholar
  5. 4.
    J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, A. Bouhal, G. Grillon, A. Antonetti and A. Mysyrowicz, J. Opt. Soc. Am. B 13, 197 (1996).ADSCrossRefGoogle Scholar
  6. 5.
    T. E. Glover, R. W. Schoenlein, A. H. Chin and C. V. Shank, Phys. Rev. Lett. 76, 2468 (1996).ADSCrossRefGoogle Scholar
  7. 6.
    V. Véniard, R. Taïeb and A. Maquet, Phys. Rev. Lett. 74, 4161 (1995).ADSCrossRefGoogle Scholar
  8. 7.
    R. Taïeb, V. Véniard and A. Maquet, J. Opt. Soc. Am. B 13, 363 (1996).ADSCrossRefGoogle Scholar
  9. 8.
    V. Véniard, R. Taïeb and A. Maquet, Phys. Rev. A 54, 721 (1996).ADSCrossRefGoogle Scholar
  10. 9.
    K. C. Kulander, K. J. Schafer and J. L. Krause in Atoms in Strong Fields, edited by M. Gavrila, Adv. Atom. Molec. Opt. Phys. Suppl. 1, Acad. Press, San Diego, p 247 (1992).Google Scholar
  11. 10.
    K. J. Schafer, Comp. Phys. Comm. 63, 427 (1991).ADSzbMATHCrossRefGoogle Scholar
  12. 11.
    A. Cionga, V. Florescu, A. Maquet and R. Taïeb, Phys. Rev. A 47, 1830 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Valérie Véniard
    • 1
  • Richard Taïeb
    • 1
  • Alfred Maquet
    • 1
  1. 1.Laboratoire de Chimie Physique-Matière et RayonnementUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations