Advertisement

Influence of Relativistic Structure and Retardation in Two-Photon Transitions in Hydrogenic Systems

  • C. Szymanowski
  • V. Véniard
  • R. Taïeb
  • A. Maquet

Abstract

The experimental development of powerful coherent short wavelength sources, both from X-ray laser devices or from higher-order harmonics, enables now a wide range of possible applications1. A particular promising branch might be the performance of multi-photon bound-bound absorption experiments in inner-shells of heavy atoms or in highly-charged ions. Considerably more information could be obtained than in traditional (single-photon) X-ray absorption spectroscopy and related techniques. For example, two-photon ionization of Argon in the XUV frequency range has already been reported2. In this regime the usual non-relativistic dipole treatment of the atom-field interaction loses its validity. By considering the two-photon transitions from the |1s〉 ground state to the |3d〉 exited state of hydrogenic systems, meaning |12 S 1/2〉 → |32 D 3/2〉;|32 D 5/2〉, both for linear and circular polarization, we discuss here, as a test case, in Dirac’s relativistic theory the influence of the relativistic fine structure and the retardation of the field.

Keywords

Circular Polarization Nuclear Charge Full Symbol Hydrogenic System Fine Structure Splitting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    see, for instance, “High-field interactions and short-wavelength generation”, ed. by H. Milchberg and R. Freeman, special issue of J. Opt. Soc. Am. B13, 51:222 (1996); B13, 314:468 (1996).Google Scholar
  2. 2.
    D. Xenakis, O. Faucher, D. Charalambidis, and C. Fotakis, “Observation of two-XUV-photon ionization using harmonic generation from a short, intense laser pulse”, J. Phys. B 29, L457: L463 (1996).Google Scholar
  3. 3.
    C. Szymanowski, V. Véniard, R. Taleb, and A. Maquet, “Two-photon transitions in hydrogenic atoms via a Sturmian basis for the Dirac Coulomb Green’s function”, Europhys. Lett. 37, 391: 396 (1997).ADSGoogle Scholar
  4. 4.
    S. A. Zapryagaev and N. L. Manakov, “Primenenie funkcii grina uravneniya diraka k issledovaniyu relyativistskich i korrelyacionnych effektov v mnogozaryadnych ionach”, Izv. Akad. Nauk SSSR 45, 2336:2353 (1981); S. A. Zapryagaev, N. L. Manakov, and V. G. Pal’chikov. “Teoriya mnogozaryaryadnych ionov c odnim i dvumya elektronami”, Energroatomizdat, Moscow (1985).Google Scholar
  5. 5.
    C. Szymanowski, V. Véniard, R. Taïeb, and A. Maquet, “Relativistic calculation of two-photon bound-bound transitions amplitudes in hydrogenic atoms”, Phys. Rev. A 56, 700: 711 (1997).ADSGoogle Scholar
  6. 6.
    A. Ron, I. B. Goldberg, J. Stein, S. T. Manson, R. H. Pratt and R. Y. Yin, “Relativistic, retardation and multipole effects in photoionization cross sections: Z, n, and 1 dependence”, Phys. Rev. A 50, 1312: 1320 (1994).ADSGoogle Scholar
  7. 7.
    A. Costescu, P. M. Bergstrom, Jr., C. Dinu, and R. H. Pratt, “Retardation and multipole effects in Rayleigh scattering by hydrogelike ions at low and x-ray photon energies”, Phys. Rev. A 50, 1390: 1398 (1994).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • C. Szymanowski
    • 1
  • V. Véniard
    • 1
  • R. Taïeb
    • 1
  • A. Maquet
    • 1
  1. 1.Laboratoire de Chimie Physique — Matière et RayonnementUniversité P. et M. Curie Paris VIParis Cedex 05France

Personalised recommendations