Precision Tests of Laser-Tunneling Ionization Models

  • B. Buerke
  • J. P. Knauer
  • S. J. McNaught
  • D. D. Meyerhofer


The energy and number distributions of photoelectrons observed outside the ionizing field can give insight into the ionization process in a strong laser field. The physics of this process can be considered to occur in a two-step process known as the “simpleman’s model.”1 First, the electron escapes the atom by tunneling, and second, it interacts with the external field. If the time it takes the electron to tunnel out of the atom is much shorter than the laser period, then ionization occurs in the adiabatic limit (the ionization potential Ip is greater than the photon energy ω), and static field calculations of the ionization rate are valid.1 In the experiments described below, the Keldysh adiabaticity parameter γ = (I p /2U p )1/2 ≪ 1,2 where Ip is the ionization potential of the atom and Up = F 2/2ω2 is the ponderomotive energy, indicating that ionization occurs in the tunneling regime. (Here the electric field F is proportional to the square root of the laser intensity.) Once liberated, the electron will gain a drift momentum which is determined by the phase of the laser field at the time of ionization. If the polarization is linear, then the drift momentum will be zero unless the external electric field is not at its peak value. The drift momentum will be nonzero and directed perpendicular to the polarization vector if the laser is elliptically polarized. If the laser is circularly polarized, the drift due to initial conditions will give the electron a directed kinetic energy of about 2Up when ponderomotive effects are included. We have used a 2-ps, 1-μm laser with intensities up to 1 × 1018 W/cm2 and two electron spectrometers to test the static tunneling models.


Ionization Rate Adiabatic Limit Polarization Ellipse Quasistatic Condition Laser Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. B. Corkum, Phys. Rev. Lett. 71: 1994 (1993).ADSCrossRefGoogle Scholar
  2. 2.
    L. V. Keldysh, Soy. Phys. JETP 20: 1307 (1965).Google Scholar
  3. 3.
    S. Augst, D. D. Meyerhofer, D. Strickland, and S.L. Chin, J. Opt. Soc. Am. B 8: 858 (1991).ADSCrossRefGoogle Scholar
  4. 4.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Soy. Phys. JETP 23: 924 (1966).ADSGoogle Scholar
  5. 5.
    P. H. Bucksbaum, L. D. Van Woerkom, R. R. Freeman, and D. W. Schumacher, Phys. Rev. A 41: 4149 (1990).Google Scholar
  6. 6.
    C. I. Moore, J. P. Knauer, and D. D. Meyerhofer, Phys. Rev. Lett. 74: 2439 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    S. J. McNaught, J. P. Knauer, and D. D. Meyerhofer, Phys. Rev. Lett. 78: 626 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    S. J. McNaught, J. P. Knauer, and D. D. Meyerhofer, Laser Physics 7: 712 (1997).Google Scholar
  9. 9.
    M. V. Ammosov, N. B. Delone, and V. P. Krainov, Soy. Phys. JETP 64: 1191 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • B. Buerke
    • 2
  • J. P. Knauer
    • 1
  • S. J. McNaught
    • 3
  • D. D. Meyerhofer
    • 2
    • 3
  1. 1.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  2. 2.Dept. of Physics and AstronomyUniversity of RochesterRochesterUSA
  3. 3.Dept. of Mechanical EngineeringUniversity of RochesterRochesterUSA

Personalised recommendations