Skip to main content

Ultrafast Diffraction from Rydberg Wave Packets Using High Harmonics

  • Chapter
  • 185 Accesses

Abstract

Rydberg wave packets have been the object of intense experimental and theoretical study over the past decade due to their many fascinating semiclassical and quantum characteristics. Long-lived wave packets localized in both the radial and angular dimensions have now been produced in alkali metal atoms.1–4 The methods of quantum control can also be applied to calculate the optimally shaped laser pulse which creates a wave packet having a desired distribution in phase space at a specified “target” time.5 Such wave packets can take the form, for instance, of “Schrödinger cat” states,6 or coherent superpositions of macroscopically distinct electronic states.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parker and C. R. Stroud, Jr., Coherence and decay of Rydberg wave packets, Phys. Rev. Lett. 56: 716 (1986).

    Article  ADS  Google Scholar 

  2. ten Wolde, L. D. Noordam, A. Lagendijk, and H. B. van Linden van den Heuvell. Observation of radially localized electron wave packets, Phys. Rev. Lett. 61: 2099 (1988).

    Article  ADS  Google Scholar 

  3. A. Yeazell, M. Mallalieu, J. Parker, and C. R. Stroud, Jr., Classical periodic motion of atomic-electronic wave packets, Phys. Rev. A 40: 5040 (1989).

    Google Scholar 

  4. Maciej Kalinski and J. H. Eberly, New states of hydrogen in a circularly polarized electromagnetic field, Phys. Rev. Lett. 77: 2420 (1996).

    Article  ADS  Google Scholar 

  5. J. L. Krause, K. J. Schafer, and M. Ben-Nun, Creating and detecting shaped Rydberg wave packets, Phys. Rev. Lett. in press (1997).

    Google Scholar 

  6. M. Noel and C. R. Stroud, Jr., Young’s double slit experiment within an atom, Phys. Rev. Lett. 75:1252 (1995); Excitation of an atomic electron to a coherent superposition of macroscopically distinct states, Phys. Rev. Lett. 77: 1913 (1996).

    Article  ADS  Google Scholar 

  7. R. Jones, C. S. Raman, D. W. Schumacher, and P. H. Bucksbaum, Ramsey interference in strongly driven Rydberg systems, Phys. Rev. Lett. 71: 2575 (1993).

    Article  ADS  Google Scholar 

  8. R. Jones, D. You, and P. H. Bucksbaum, Ionization of Rydberg atoms by subpicosecond half-cycle electromagnetic pulses, Phys. Rev. Lett. 70: 1236 (1993).

    Article  ADS  Google Scholar 

  9. G. M Lankhuijzen and L. D. Noordam, Streak-camera probing a rubidium wave packet decay in an electric field, Phys. Rev. Lett., 76: 1784 (1996).

    Article  ADS  Google Scholar 

  10. J.M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller, A. Bouhal, G. Grillon, A. Antonetti, and A. Mysyrowicz, Cross-correlation measurements of femtosecond extreme-ultraviolet high-order harmonics, JOSA B, 13: 197 (1996).

    Article  ADS  Google Scholar 

  11. JT. Randall. The diffraction of X-rays and electrons by amorphous solids, liquids, and gases, John Wiley and Sons, New York, 1934.

    Google Scholar 

  12. EO. Wollan, Scattering of x-rays from gases. Phys. Rev. 37: 862 (1931).

    Article  ADS  Google Scholar 

  13. LWaller and D. R. Hartree, Proc. Roy. Soc. A 124: 119 (1929).

    Article  ADS  MATH  Google Scholar 

  14. C. Williamson, M. Dantus, S. B. Kim, and A. H. Zewail, Ultrafast diffraction and molecular structure, Chem. Phys. Lett. 196: 529 (1992).

    Article  ADS  Google Scholar 

  15. Anderson, I. V. Tomov, and P. M. Rentzepis, A high repetition rate, picosecond hard x-ray system, and its application to time-resolved x-ray diffraction, J. Chem. Phys. 99: 869 (1993).

    Article  ADS  Google Scholar 

  16. Ben-Nun, T. J. Martinez, P. M. Weber, and K. R. Wilson, Direct imaging of excited electronic states using diffraction techniques: Theoretical considerations, Chem. Phys. Lett. 262: 405 (1996).

    Article  ADS  Google Scholar 

  17. Zhou, J. Peatross, M. M. Murnane, and H. C. Kapteyn, Enhanced high-harmonic generation using 25 fs laser pulses, Phys. Rev. Lett. 76: 752 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schafer, K.J., Krause, J.L. (1998). Ultrafast Diffraction from Rydberg Wave Packets Using High Harmonics. In: DiMauro, L., Murnane, M., L’Huillier, A. (eds) Applications of High-Field and Short Wavelength Sources. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9241-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9241-6_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9243-0

  • Online ISBN: 978-1-4757-9241-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics