Pressure Ionization and Density Diagnostics in Subpicosecond Laser-Produced Plasmas

  • M. Nantel
  • G. Ma
  • S. Gu
  • C. Y. Côté
  • J. Itatani
  • D. Umstadter


The atomic physics of high-density plasmas is studied extensively for its relevance to astrophysics1, inertial confinement fusion,2,3 x-ray lasers,4 and to the interaction of ultrashort lasers with solids. 5-7 Of utmost importance is the knowledge of the plasma parameters of electron density, Ne, and temperature, Te, as they govern the atomic physics in the plasma, from its ionization balance to its emission and absorption. The structure and behavior of atoms and ions, for example, can be radically affected by the presence of strong fields in high-density plasmas1, leading to such effects as extreme line broadening and pressure ionization.1,2,9 Pressure ionization and line-merging have been used in laboratory plasmas as a density diagnostic of spatially- and/or temporally-integrated spectra. 2,10–13 But in laser-produced plasmas, conditions often vary rapidly over time and space, so it is important to resolve both these dimensions for accurate diagnostics. Furthermore, several models are available to quickly extract densities from spectroscopic data but are very different and need to be carefully benchmarked in order to identify which apply for any given set of plasma parameters. Precise data for model validation is rare and usually comes from plasmas limited in density and temperature range.13 Here, we compare four models under a wide range of densities and temperatures in plasmas created with ultrafast laser pulses. These 100-fs laser pulses have the advantage over nanosecond pulses of depositing the energy of the laser impulsively, in a small target layer. Thus, the spectroscopic measurements are conducted after the laser pulse, in a freely expanding plasma, without the added complication of further energy deposition during the plasma evolution.


Pressure Ionization Inertial Confinement Fusion Extreme Line Carbon Plasma Continuum Lowering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Brush and B.H. Armstrong, Proc. Workshop on Lowering of the Ionization Potential, JILA report 79, ( Univ. of Colorado, Boulder, CO 1965 ).Google Scholar
  2. [2]
    C.M. Lee and A. Hauer, Appl. Phys. Lett. 33, 692 (1978).ADSCrossRefGoogle Scholar
  3. [3]
    B.A. Hammel, C.J. Keane, M.D. Cauble, D.R. Kania, J.D. Kilkenny, R.W. Lee, and R. Pasha, Phys. Rev. Lett. 70, 1263 (1993).ADSCrossRefGoogle Scholar
  4. [4]
    Atomic Processes in Plasma,AIP Conf. Proc. 257 E.S. Mannar, J.L. Terry, eds. (American Institute of Physics, New York, NY, 1992), and references therein.Google Scholar
  5. [5]
    A. Rousse, P. Audebert, J.P. Geindre, F. Falliès, J.C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, Phys. Rev. E 50, 2200 (1994).ADSCrossRefGoogle Scholar
  6. [6]
    Z. Jiang, J.C. Kieffer, J.P. Matte, M. Chaker, O. Peyrusse, D. Gilles, G. Korn, A. Maksimchuk, S. Coe, and G. Mourou, Phys. Plasma 2, 1702 (1995).ADSCrossRefGoogle Scholar
  7. [7]
    J. Workman, A. Maksimchuk, X. Liu, U. Ellenberger, J.S. Coe, C.Y. Chien, and D. Umstadter, Phys. Rev. Lett. 75, 2324 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    Spectral Line Broadening by Plasmas,H.R. Griem (Academic Press, New York, NY, 1974).Google Scholar
  9. [9]
    R.M. More, J. Quant. Spectrosc. Radiat. Transfer 27, 345 (1982).CrossRefGoogle Scholar
  10. [10]
    G.A. Kyrala, R.D. Fulton, E.K. Wahlin, L.A. Jones, G.T. Shappert, J.A. Cobble, and A.J. Taylor, Appl. Phys. Lett. 60, 2195 (1992).ADSCrossRefGoogle Scholar
  11. [11]
    P.G. Burkhalter, G. Mehlman, D.A. Newman, M. Krishnana, and R.R. Prasad, Rev. Sci. Instrum. 63, 5052 (1992).ADSCrossRefGoogle Scholar
  12. [12]
    D. Riley, L.A. Gizzi, F.Y. Khattak, A.J. Mackinnon, S.M. Viana, and O. Willi, Phys. Rev. Lett. 69, 3739 (1992).ADSCrossRefGoogle Scholar
  13. [13]
    D.J. Heading, G.R. Bennett, J.S. Wark, and R.W. Lee, Phys. Rev. Lett. 74, 3616 (1995).ADSCrossRefGoogle Scholar
  14. [14]
    D.K. Bradley, J. Kilkenny, S. Rose, and J.D. Hares, Phys. Rev. Lett. 59, 2995 (1987).ADSCrossRefGoogle Scholar
  15. [15]
    L. DaSilva, A. Ng, B.K. Godwal, G. Chiu, and F. Cottet, Phys. Rev. Lett. 62, 1623 (1989).ADSCrossRefGoogle Scholar
  16. [16]
    J. Workman, M. Nantel, A. Maksimchuk, and D. Umstadter, Appl. Phys. Lett. 70, 312 (1997).ADSCrossRefGoogle Scholar
  17. [17]
    J.C. Stewart and K.D. Pyatt, Jr., Astrophys. J. 144, 1203 (1966).ADSCrossRefGoogle Scholar
  18. [18]
    J.A. Kunc and W.H. Soon, Astrophys. J. 396, 364 (1992).ADSCrossRefGoogle Scholar
  19. [19]
    B.J.B. Crowley, Phys. Rev. A 41, 2179 (1990).Google Scholar
  20. [20]
    M.W.C. Dharma-wardana and F. Perrot, Phys. Rev. A 45, 5883 (1992).ADSCrossRefGoogle Scholar
  21. [21]
    D.R. Inglis and E. Teller, Astrophys. J. 90, 439 (1939).ADSzbMATHCrossRefGoogle Scholar
  22. [22]
    J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, submitted to Opt. Commun. (1997).Google Scholar
  23. [23]
    C.Y. Côté, J.C. Kieffer, P. Gallant, J.C. Rebuffie, C. Goulmy, A. Maksimchuk, G. Mourou, D. Kaplan, and M. Bouvier, SPIE Proc. 2869, 956 (1997).ADSCrossRefGoogle Scholar
  24. [24]
    P. Gallant, Z. Jiang, J. Fuchs, J.C. Kieffer, H. Pépin, D. Gontier, A. Mens, N. Blanchot, J.L. Miguel, J.F. Pelletier, and M. Sutton, to be published in SPIE Proc. 3157. Google Scholar
  25. [25]
    A. Maksimchuk, M. Kim, J. Workman, G. Korn, J. Squier, D. Du, D. Umstadter, G. Mourou, and M. Bouvier, Rev. Sci. Instrum. 67, 697 (1996).ADSCrossRefGoogle Scholar
  26. [26]
    R.L. Kelly, J. Phys. Chem. Ref. Data 16, suppl. 1, 1 (1987).Google Scholar
  27. [27]
    R.W. Lee, B.L. Whitten, and R.E. Stout, II, J. Quant. Spectrosc. Radiat. Transfer 32, 91 (1984).ADSCrossRefGoogle Scholar
  28. [28]
    M. Nantel, G. Ma, S. Gu, C.Y. Côté, J. Itatani, and D. Umstadter, submitted to Phys. Rev. Lett. (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Nantel
    • 1
  • G. Ma
    • 1
  • S. Gu
    • 1
  • C. Y. Côté
    • 1
  • J. Itatani
    • 1
  • D. Umstadter
    • 1
  1. 1.Center for Ultrafast Optical ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations