Advertisement

The Production of Petawatt Laser Pulses

  • M. D. Perry
  • B. C. Stuart
  • D. Pennington
  • G. Tietbohl
  • J. Britten
  • C. Brown
  • S. Herman
  • J. Miller
  • H. T. Powell
  • B. W. Shore
  • V. Yanovsky

Abstract

Chirped-pulse amplification applied to broad-bandwidth solid-state lasers has created a revolution in the production and use of terawatt and now petawatt class lasers.1,2 The concepts and technology contributing to this revolution have evolved continuously since the early 1970’s. Following the grating compressor work of Treacy3, Bischell4 and others described the application of chirped-pulse amplification to Nd:Glass lasers. This was followed by a large amount of work on fiber-grating pulse compression for communication research.5 In 1985, Strickland and Mourou combined many of these ideas into the first practical demonstration of chirped-pulse amplification with a solid-state laser.6 Following this initial demonstration, rapid developments in technology such as the stretcher design of Martinez7 led to small scale systems capable of terawatt8 and multiterawatt pulses.9–11 Occurring in parallel with the development of chirped-pulse amplification technology using Nd:Glass lasers, was the development of the new laser material, titanium-doped sapphire. The commercial availability of this unique laser material dramatically propelled the revolution in CPA based solid-state lasers. An overwhelming majority of CPA lasers now employ Ti:sapphire either throughout the entire laser system or at least as the oscillator material.13 These early developments and the large amount of effort that has gone into the laser technology in recent years have culminated in high pulse energy systems producing pulses with a peak power of 125 TW14 and very short-pulse systems producing multiterawatt pulses which only contain a few optical cycles.15–18 Here, we describe the limits of CPA technology in the context of a large scale system producing pulses with a peak power exceeding 1.25 petawatts (1250 TW).

Keywords

Damage Threshold Diffraction Efficiency Glass Laser Optic Letter Small Signal Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Perry, and Gerard Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science, 264, 917 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    C. Joshi and P.B. Corkum, Physics Today, January 1996.Google Scholar
  3. 3.
    E.B. Treacy, IEEE J. Quan. Elec., 5, 454 (1969).CrossRefGoogle Scholar
  4. 4.
    R.A. Fisher and W.K. Bischell, IEEE J. Quan. Elec., 11, 46 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    D. Grischkowsky and A.C. Balant, App. Phys. Lett., 41, 1, (1982).ADSCrossRefGoogle Scholar
  6. 6.
    D. Strickland and G. Mourou, Opt. Comm., 56, 219 (1985).ADSCrossRefGoogle Scholar
  7. 7.
    O.E. Martinez, IEEE J. Quan. Elec., 23, 1385 (1987).CrossRefGoogle Scholar
  8. 8.
    P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, IEEE J. Quan. Elec., 24, 398 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    M.D. Perry, F.G. Patterson, R. Ettlebrick and J. Weston, Opt. Lett, 15, 381 (1990)ADSCrossRefGoogle Scholar
  10. F.G. Patterson, M.D. Perry and J.T. Hunt, J. Opt. Soc. Amer. B, 8, 2384 (1991).ADSCrossRefGoogle Scholar
  11. 10.
    C. Sauteret, et al, Optics Lett., 16, 238 (1991)ADSCrossRefGoogle Scholar
  12. C. Rouyer, et al, Optics Lett., 18, 214 (1993).ADSCrossRefGoogle Scholar
  13. 11.
    K. Yamakawa, H. Shiraga, and Y. Kato, Optics Lett., 16, 1593 (1991).ADSCrossRefGoogle Scholar
  14. 12.
    P.F. Moulton, J. Opt. Soc. Amer. B, 3, 125 (1986).CrossRefGoogle Scholar
  15. 13.
    D.E. Spence, P.N. Kean, and W. Sibbett, Optics Letters, 16, 42 (1991).ADSCrossRefGoogle Scholar
  16. 14.
    B.C. Stuart, M.D. Perry, J. Miller, G. Tietbohl, S. Herman, J.A. Britten, C. Brown, D. Pennington, V. Yanovsky and K. Wharton, “125-TW Ti:Sapphire/ Nd:Glass Laser System,” Optics Letters, 22, 242 (1997).ADSCrossRefGoogle Scholar
  17. 15.
    J.P. Chamberet, et al, Optics Letters, 21, 1921 (1996)ADSCrossRefGoogle Scholar
  18. 16.
    J.P. Zhou, C.P. Huang, M.M. Murnane and H.C. Kapteyn, Optics Letters, 20, 64 (1995).Google Scholar
  19. 17.
    C.P. Barty, J. Squier, K. WilsonGoogle Scholar
  20. 18.
    C. Spielmann, Optics Letters, (1996)Google Scholar
  21. 19.
    M.D. Perry, T. Ditmire, and B.C. Stuart, “Self-Phase Modulation in Chirped Pulse Amplification,” Optics Letters, 19, 2149 (1994).ADSCrossRefGoogle Scholar
  22. 20.
    M. Tabak, M.D. Perry, J. Hammer, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M.Campbell, and R. J. Mason, Phys. Plasmas, 1, 1626 (1994).ADSCrossRefGoogle Scholar
  23. 21.
    B. Stuart, S. Herman and M.D. Perry, IEEE J. Quan. Elec., 31, 528 (1995).ADSCrossRefGoogle Scholar
  24. 22.
    M.D. Perry, T. Ditmire, and D. Strickland, Optics Letters, 17, 601 (1992).ADSCrossRefGoogle Scholar
  25. 23.
    R. Boyd, J.A. Britten, B.W. Shore, B. Stuart, and M.D. Perry, “High Efficiency Metallic Gratings for Laser Applications,” Applied Optics, 34 1697 (1995).ADSCrossRefGoogle Scholar
  26. 24.
    M.D. Perry, J.A. Britten, R.D. Boyd, B. Shore, C. Shannon, and E. Shults, Optics Letters, 20, 940 (1995).ADSCrossRefGoogle Scholar
  27. 25.
    H.T.Nguyen, B.W. Shore, S.J. Bryan, J.A. Britten, and M.D. Perry, “High-efficiency fused silica transmission gratings,” Optics Letters, 22, 142 (1997).ADSCrossRefGoogle Scholar
  28. 26.
    J.A. Britten, M.D. Perry, B.W. Shore, and R.D. Boyd, “Universal grating design for pulse stretching and compression in the 800–1200 nm range,” Opt. Lett., 21, 540 (1996).ADSCrossRefGoogle Scholar
  29. 27.
    M. D. Perry, V. Yanovsky, M. Feit, and A. Rubenchik, “Plasma mirrors,” Phys. Plasmas, submitted, 1997.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. D. Perry
    • 1
  • B. C. Stuart
    • 1
  • D. Pennington
    • 1
  • G. Tietbohl
    • 1
  • J. Britten
    • 1
  • C. Brown
    • 1
  • S. Herman
    • 1
  • J. Miller
    • 1
  • H. T. Powell
    • 1
  • B. W. Shore
    • 1
  • V. Yanovsky
    • 1
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA

Personalised recommendations