Studies of Methane Monooxygenase and Alkane Oxidation Model Complexes

  • Amy C. Rosenzweig
  • Xudong Feng
  • Stephen J. Lippard
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Among the recently delineated class of non-heme iron oxo proteins is the hydroxylase component of methane monooxygenase, an enzyme that catalyzes the conversion of methane to methanol according to eq. 1.1 Methane monooxygenases (MMOs) are found in methanotrophic bacteria
$$ C{H_4} + NADH + {H^ + } + {O_2} \to C{H_3}OH + NA{D^ + } + {H_2}O $$
that use methane as their sole source of carbon and energy.2 In this article we discuss mainly the results of studies that have been carried out on MMOs from the organisms Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. The soluble MMOs from both of these organisms contain two proteins in addition to the hydroxylase, a reductase with associated FAD and Fe2S2 prosthetic groups and a smaller polypeptide, designated protein B, that is believed to play a role in regulating electron transfer between the reductase and hydroxylase components.3, 4 The relative roles of these proteins in the overall MMO system are displayed in Figure 1. Most catalysts that effect the hydroxylation of alkanes by dioxygen are also able to catalyze the direct oxidation (autoxidation) of the reductant with dioxygen. The MMO system avoids this potential problem by physically isolating the hydroxylase and reductase functionalities on different proteins.


Iron Center Methane Monooxygenase Methylococcus Capsulatus Diiron Center Soluble Methane Monooxygenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dalton, Oxidation of hydrocarbons by methane monooxygenases from a variety of microbes, Adv. Appl. Microbiol., 26:71 (1980).CrossRefGoogle Scholar
  2. 2.
    C. Anthony, “The biochemistry of methylotrophs,” Academic Press, London (1982).Google Scholar
  3. 3.
    J. Colby and H. Dalton, Resolution of the methane monooxygenase of Methylococcus capsulatus (Bath) into three components. Purification and properties of component C, a flavoprotein, Biochem. J., 171:461 (1978).PubMedGoogle Scholar
  4. 4.
    B. G. Fox, W. A. Froland, J. E. Dege, and J. D. Lipscomb, Methane monooxygenase from Methylosinus trichosporium OB3b: purification and properties of a three component system with high specific activity from a Type II methanotroph, J. Biol. Chem., 264: 10023 (1989).PubMedGoogle Scholar
  5. 5.
    B. G. Fox, Y. Liu, J. E. Dege, and J. D. Lipscomb, Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b, J. Biol. Chem., 266:540 (1991).PubMedGoogle Scholar
  6. 6.
    A. C. Stainthorpe, J. C. Murrell, G. P. C. Salmond, and H. Dalton, Molecular analysis of methane monooxygenase from Methylococcus capsulatus (Bath), Arch. Microbiol., 152:154 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    J. G. DeWitt, J. G. Bentsen, A. C. Rosenzweig, B. Hedman, J. Green, S. Pilkington, G. C. Papaefthymiou, H. Dalton, K. O. Hodgson, and S. J. Lippard, X-ray absorption, Mössbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase, submitted for publication.Google Scholar
  8. 8.
    B. G. Fox and J. D. Lipscomb, Purification of a high specific activity methane monooxygenase hydroxylase component from a Type II methanotroph, Biochem. Biophys. Res. Commun., 154:165 (1989).CrossRefGoogle Scholar
  9. 9.
    J. B. Vincent, G. L. Olivier-Lilley, and B. A. Averill, Proteins containing oxo-bridged dinucleae iron centers: a bioinorganic perspective, Chem. Rev., 90:1447 (1990).CrossRefGoogle Scholar
  10. 10.
    J. Green and H. Dalton, Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel protein of enzyme activity, J. Biol. Chem., 260:15795 (1985).PubMedGoogle Scholar
  11. 11.
    J. Lund and H. Dalton, Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH: acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath), Eur. J. Biochem., 147:291 (1985).PubMedCrossRefGoogle Scholar
  12. 12.
    W. E. Wu and S. J. Lippard, unpublished results.Google Scholar
  13. 13.
    S. J. Pilkington, G. P. C. Salmond, J. C. Murrell, and H. Dalton, Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase, FEMS Microbiol. Lett, 72:345 (1990).CrossRefGoogle Scholar
  14. 14.
    W. E. Wu and S. J. Lippard, unpublished results.Google Scholar
  15. 15.
    A. C. Rosenzweig and S. J. Lippard, unpublished results.Google Scholar
  16. 16.
    A. C. Stainthorpe, V. Lees, G. P. C. Salmond, H. Dalton, and J. C. Murrell, The methane monooxygenase gene cluster of Methylococcus capsulatus (Bath), Gene, 91:27 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Ericson, B. Hedman, K. O. Hodgson, J. Green, H. Dalton, J. G. Bentsen, R. H. Beer, and S. J. Lippard, Structural characterization by EXAFS spectroscopy of the binuclear iron center in protein A of methane monooxygenase from Methylococcus capsulatus (Bath), J. Am. Chem. Soc., 110:2330 (1988).CrossRefGoogle Scholar
  18. 18.
    W. H. Armstrong and S. J. Lippard, Reversible protonation of the oxo bridge in a hemerythrin model compound. Synthesis, structure, and properties of (μ-hydroxo) bis(μ-acetato)-bis[hydrotris(l-pyrazolyl)borato]diiron(III), [(HB(pz)3)Fe(OH)(O2CCH3)2Fe(HB(pz)3)]+, J. Am. Chem. Soc., 106:4632 (1984).CrossRefGoogle Scholar
  19. 19.
    W. H. Armstrong, A. Spool, G. C. Papaefthymiou, R. B. Frankel, and S. J. Lippard, Assembly and characterization of an accurate model for the diiron center in hemerythrin, J. Am. Chem. Soc., 106:3653 (1984)CrossRefGoogle Scholar
  20. 20.
    B. Hedman, M. S. Co, W. H. Armstrong, K. O. Hodgson, and S. J. Lippard, EXAFS studies of dinuclear iron complexes as models for hemerythrin and related proteins, Inorg. Chem., 25:3708 (1986).CrossRefGoogle Scholar
  21. 21.
    R. C. Prince, G. N. George, J. C. Savas, S. P. Cramer, and R. N. Patel, Spectroscopic properties of the hydroxylase of methane monooxygenase, Biochim. Biophys. Acta, 952:220 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    X. Feng and S. J. Lippard, unpublished results.Google Scholar
  23. 23.
    P. J. Marini, K. S. Murray, and B. O. West, Iron complexes of N-substituted thiosalicylideneimines. Part 1. Synthesis and reactions with oxygen and carbon monoxide. J. Chem. Soc., Dalton Trans., 143 (1983).Google Scholar
  24. 24.
    B. P. Murch, F. C. Bradley, and L. Que, Jr., A dinuclear iron peroxide complex capable of olefin epoxidation, J. Am. Chem. Soc, 108:5027 (1986).CrossRefGoogle Scholar
  25. 25.
    Q. Chen, J. B. Lynch, P. Gomez-Romero, A. Ben-Hussein, G. B. Jameson, C. J. O’Connor, and L. Que, Jr., Iron oxo aggregates. Dinuclear and tetranuclear complexes of N, N, N’, N’-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1, 3-diaminopropanol, Inorg. Chem., 27:2673 (1988).CrossRefGoogle Scholar
  26. 26.
    S. Yan, D. D. Cox, L. L. Pearce, C. Juarez-Garcia, L. Que, Jr., J. H. Zhange, and C. J. O’ Connor, A(μ-oxo)(μ-carboxylato)diiron(III) complex with distinct iron sites, Inorg. Chem., 28:2507 (1989).CrossRefGoogle Scholar
  27. 27.
    F. Arena, C. Floriani, A. Chiesi-Villa, C. Guastini, A mixed valence μ-oxo iron(III)-iron(III) complex: a polynuclear iron-sodium-oxo aggregate from the chemical reduction of a μ-oxo diiron(III) complex, J. Chem. Soc, Chem. Commun., 1369 (1986).Google Scholar
  28. 28.
    W. B. Tolman, A. Bino, and S. J. Lippard, Self-assembly and dioxygen reactivity of an asymmetric, triply bridged diiron(II) complex with imidazole ligands and an open coordination site, J. Am. Chem. Soc, 111:8522 (1989).CrossRefGoogle Scholar
  29. 29.
    D. M. Kurtz, Oxo-and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit, Chem. Rev., 90:585 (1990).CrossRefGoogle Scholar
  30. 30.
    A. C. Rosenzweig, C. Bender, J. Peisach, and S. J. Lippard, unpublished results.Google Scholar
  31. 31.
    W. B. Tolman, S. Liu, J. G. Bentsen, and S. J. Lippard, Models of the reduced forms of polyiron oxo proteins: an asymmetric, triply carboxylate bridged diiron(II) complex and its reaction with dioxygen, J. Am. Chem. Soc, 113:152 (1991).CrossRefGoogle Scholar
  32. 32.
    A. S. Borovik and L. Que, Jr., Models for the FeIIFeIII and FeIIFeII forms of iron-oxo proteins, J. Am. Chem. Soc., 110:2345 (1988).CrossRefGoogle Scholar
  33. 33.
    K. E. Liu and S. J. Lippard, Redox properties of the hydroxylase component of methane monooxygenase from Methylococcus capsulatus (Bath)-effects of protein B, reductase, and substrate, J. Biol. Chem., in press.Google Scholar
  34. 34.
    A. Stassinopoulos, G. Schulte, G. C. Papaefthymiou, and J. P. Caradonna, Synthesis, structure, and electronic characterization of reactive diiron(II) 1, 2-bis-(2-hydroxybenzamido)benzene complexes as models for methane monooxygenase, submitted for publication.Google Scholar
  35. 35.
    P. Cofré, S. A. Richert, A. Sobkowjak, and D. T. Sawyer, Redox chemistry of iron picolinate complexes and of their hydrogen peroxide and dioxygen adducts, Inorg. Chem., 29:2645 (1990).CrossRefGoogle Scholar
  36. 36.
    X. Feng and S. J. Lippard, unpublished results.Google Scholar
  37. 37.
    W. Micklitz, S. G. Bott, J. G. Bentsen, and S. J. Lippard, Characterization of a novel μ4-peroxide tetrairon unit of possible relevance to intermediates in metal-catalyzed oxidations of water to dioxygen, J. Am. Chem. Soc., 111:372 (1989).CrossRefGoogle Scholar
  38. 38.
    N. Kitajima, H. Fukui, Y. Moro-oka, Y. Mizutani and T. Kitagawa, Synthetic model for dioxygen binding sites of non-heme iron proteins: X-ray structure of Fe(OBz)(MeCN)(HB(3, 5-iPr2pz)3 and resonance Raman evidence for reversible formation of peroxo adduct, J. Am. Chem. Soc., 112:6402 (1990).CrossRefGoogle Scholar
  39. 39.
    S. Menage, B. A. Brennan, C. Juarez-Garcia, E. Münck, and L. Que, Jr., Models for iron-oxo proteins: Dioxygen binding to a diferrous complex, J. Am. Chem. Soc, 112:6423 (1990).CrossRefGoogle Scholar
  40. 40.
    X. Feng, M. E. Roth, D. P. Bancroft, and S. J. Lippard, manuscript to be submitted.Google Scholar
  41. 41.
    N. Kitajima, H. Fukui, and Y. Moro-oka, A model for methane monooxygenase: Dioxygen oxidation of alkanes by use of a μ-oxo dinuclear iron complex, J. Chem. Soc, Chem Commun., 485 (1988).Google Scholar
  42. 42.
    J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong, and R. H. Fish, Modeling the dinuclear sites of iron biomolecules: Synthesis and properties of Fe2O(OAc)2Cl2(bipy)2 and its use as an alkane activation catalyst, J. Am. Chem. Soc., 110:6898 (1988).CrossRefGoogle Scholar
  43. 43.
    G. Balavoine, D. H. R. Barton, J. Boivin, A. Gref, P. L. Coupanec, N. Ozbalik, J. A. X. Pestana, and H. Riviere, Functionalization of saturated hydrocarbons. Part X. A comparative study of chemical and electrochemical processes (GIF and GIF-Orsay systems) in pyridine, in acetone and in pyridine-co-solvent mixtures, Tetrahedron, 44:1091 (1988).CrossRefGoogle Scholar
  44. 44.
    S. Inbar, A. Ehret, and K. Norland, Oxidation of tetramethyl reductic acid by silver halide, Abstracts of Papers, Natl. Meet. Soc. Photogr. Sci., Minneapolis, MN, USA (1987).Google Scholar
  45. 45.
    G. A. Hamilton, R. J. Workman, and L. Woo, Oxidation by molecular oxygen. I. Reaction of a possible model system for mixed-function oxidases, J. Am. Chem. Soc, 86:3390 (1964).CrossRefGoogle Scholar
  46. 46.
    G. A. Russel, Reactivity, selectivity, and polar effects in hydrogen atom transfer reaction, in “Free Radicals”, J. K. Kochi Ed., Wiley: New York, Vol. I:pp. 275 (1973).Google Scholar
  47. 47.
    J. Green and H. Dalton, Substrate specificity of soluble methane monooxygenase, J. Biol. Chem., 264: 17698 (1989).PubMedGoogle Scholar
  48. 48.
    J. T. Groves, Mechanisms of metal-catalysed oxygen insertion, in “Metal Ion Activation of Dioxygen”, T. G. Spiro ed., Wiley: New York, pp. 125 (1980).Google Scholar
  49. 49.
    J. T. Groves, and D. V. Subramanian, Hydroxylation by cytochrome P-450 and metalloporphyrin models. Evidence for allylic rearrangement, J. Am. Chem. Soc., 106:2177 (1984).CrossRefGoogle Scholar
  50. 50.
    C. R. E. Jefcoate, J. R. L. Smith, and R. O. C. Norman, Hydroxylation. Part IV. Oxidation of some benzenoid compounds by Fenton’s reagent and the ultraviolet irradiation of hydrogen peroxide. J. Chem. Soc. B:1013 (1969).Google Scholar
  51. 51.
    J. T. Groves and T. E. Nemo, Aliphatic hydroxylation catalyzed by iron porphyrin complexes. J. Am. Chem. Soc, 105:6243 (1983).CrossRefGoogle Scholar
  52. 52.
    D. H. R. Barton, J. Boivin, N. Ozbalik and K. M. Schwartzentruber, On the mechanism of the Gif system for the oxidation of saturated hydrocarbons, Tetrahedron Lett., 26:447 (1985).CrossRefGoogle Scholar
  53. 53.
    S. G. Jezequel and I. J. Higgins, Mechanistic aspects of biotransformations by the monooxygenase system of M. trichosporium OB3b, J. Chem. Tech. Biotechnol., 33B:139 (1983).Google Scholar
  54. 54.
    H. Dalton and D. J. Leak, Mechanistic studies on the mode of action of methane monooxygenase, in “Gas Enzymology”, H. Degn, R. P. Cox, and H. Toftlund eds., Reidel: Dordrecht, Holland, pp. 169 (1985).CrossRefGoogle Scholar
  55. 55.
    S. R. Boone, G. H. Purser, H. R. Chang, M. D. Lowery, D. N. Hendrickson, and C. G. Pierpont, Magnetic exchange interactions in semiquinone complexes of iron. Structural and magnetic properties of Tris(3, 5-di-tert-utylsemiquinonato)tetrakis(3, 5-di-tert-butylcatecholato) tetrairon (III), J. Am. Chem. Soc, 111:2292 (1989).CrossRefGoogle Scholar
  56. 56.
    R. M. Solbrig, L. L. Duff, D. F. Shriver, and I. M. Klotz, Raman and infrared spectroscopy of the oxo-bridged iron (III) complex, [Cl3Fe-O-FeCl3]2- as a spectroscopic model for the oxo bridge in hemerythrin and ribonucleotide reductase, J. Inorg. Biochem., 17:69 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Amy C. Rosenzweig
    • 1
  • Xudong Feng
    • 1
  • Stephen J. Lippard
    • 1
  1. 1.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations