Skip to main content

Oxygenation by Methane Monooxygenase: Oxygen Activation and Component Interactions

  • Chapter
Applications of Enzyme Biotechnology

Abstract

Methanotrophic bacteria possess the unique ability to utilize methane as the sole source of carbon and energy. Indeed, methane is the only carbon source capable of sustaining vigorous and long term growth of these organisms1. The methanolytic activity of methanotrophs can be ascribed to the elaboration of a unique enzyme, methane monooxygenase2 (MMO), which catalyzes the following reaction:

$$ Methane + {O_2} + NADH + {H^ + } \to NA{D^ + } + {H_2}O + Methanol $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Whittenbury, K C. Phillips, and J. F. Wilkinson, J. Gen. Microbiol. 61:205 (1970).

    Article  PubMed  CAS  Google Scholar 

  2. J. Colby and H. Dalton, Biochem. J. 171:461 (1978).

    PubMed  CAS  Google Scholar 

  3. J. Colby, H. Dalton, and R. Whittenbury, Ann. Rev. Microbiol 33:481 (1979).

    Article  CAS  Google Scholar 

  4. C. Anthony, “The Biochemistry of the Methylotrophs” Academic Press, London (1982).

    Google Scholar 

  5. S. H. Stanley, S. D. Prior, D. J. Leak, and H. Dalton, H. Biotech. Lett. 5:487 (1983).

    Article  CAS  Google Scholar 

  6. D. Scott, D. J. Best, and I. J. Higgins, Biotech. Lett. 3:641 (1981).

    Article  CAS  Google Scholar 

  7. K J. Davis, A. Cornish, and I. J. Higgins, J. Gen. Micro. 133:291 (1987).

    CAS  Google Scholar 

  8. J. Green, and H. Dalton, J. Biol. Chem. 260:15795 (1985).

    PubMed  CAS  Google Scholar 

  9. M. P. Woodland and H. Dalton, J. Biol. Chem. 259:53 (1984).

    PubMed  CAS  Google Scholar 

  10. J. Colby and H. Dalton Biochem. J. 177:903 (1979).

    PubMed  CAS  Google Scholar 

  11. R. N. Patel, Arch. Biochem. Biophys. 252:229 (1986).

    Article  Google Scholar 

  12. R. N. Patel, and J. C. Savas, J. Bacteriol. 169:2313 (1987).

    PubMed  CAS  Google Scholar 

  13. B. G. Fox and J. D. Lipscomb, Biochem. Biophys. Res. Comm. 154:165 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. B. G. Fox., W. A. Froland, J. Dege, and J. D. Lipscomb, J. Biol. Chem. 264:10023 (1989)

    PubMed  CAS  Google Scholar 

  15. R. E. White and M. J. Coon, Ann. Rev. Biochem. 49:315 (1980).

    Article  PubMed  CAS  Google Scholar 

  16. B. G. Fox, K. K. Surerus, E. Münck, E., and J. D. Lipscomb, J. Biol. Chem. 263:10553 (1988).

    PubMed  CAS  Google Scholar 

  17. M. P. Woodland, D. S. Patil, R. Cammack, and H. Dalton, Biochim. Biophys. Acta, 873:237 (1986).

    Article  CAS  Google Scholar 

  18. R. C. Prince, G. N. George, J. C. Savas, S. P. Cramer, and R. N. Patel, Biochim. Biophys. Acta 952:220 (1988).

    Article  PubMed  CAS  Google Scholar 

  19. I. J. Higgins, D. J. Best, and R. C. Hammond, Nature 286:561 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. J. Green and H. Dalton, J. Biol. Chem. 264:17698 (1989).

    PubMed  CAS  Google Scholar 

  21. D. H. Enhalt and U. Schmidt, Pure Appl. Geophys. 116:452 (1978).

    Article  Google Scholar 

  22. D. H. Enhalt, in: “Microbial Production and Utilization of Gases”, H. G. Schlegel, G. Gottschalk, N. Pfennig, eds., pp. 13–22, Goltze Publishers, Göttingen (1976).

    Google Scholar 

  23. B. Hileman, Chem. & Eng. News 67:25 (1989).

    Article  Google Scholar 

  24. B. G. Fox, J. G. Borneman, L. P. Wackett, and J. D. Lipscomb, Biochemistry 29:6419 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. A. C. Stainthorpe, V. Lees, G. P. C. Salmond, H. Dalton, and J. C. Murrell, Gene, 91:27 (1990).

    Article  PubMed  CAS  Google Scholar 

  26. D. L. N. Cardy, V. Laidler, G. P. C. Salmond, and J. C. Murrell, Molecular Microbiology 5:335 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. B. G. Fox, W. A. Froland, and J. D. Lipscomb, in: “Gas Oil and Coal Biotechnology I” C. Akin and J. Smith, eds., pp. 197–214, Institute of Gas Technology Press, Chicago, (1990).

    Google Scholar 

  28. B. G. Fox and J. D. Lipscomb, in: “Biological Oxidation Systems”, C. C. Reddy, G.A. Hamilton, and M.K Madyastha, eds., Vol. 1, pp. 367–388, Academic Press, San Diego, (1990).

    Google Scholar 

  29. P. Bertrand, B. Guigliarelli, and J. P. Gayda, Arch. Biochem. Biophys. 245:305 (1986).

    Article  PubMed  CAS  Google Scholar 

  30. M. P. Hendrich, E. Münck, B. G. Fox, and J. D. Lipscomb, J. Amer. Chem. Soc. 112:5861 (1990).

    Article  CAS  Google Scholar 

  31. A. Ericson, B. Hedman, K. O. Hodgson, J. Green, H. Dalton, J. G. Bentsen, R. H. Beer, and S. J. Lippard, J. Amer. Chem. Soc. 110:2330 (1988).

    Article  CAS  Google Scholar 

  32. B. G. Fox, Y. Liu, Y., J. Dege, and J. D. Lipscomb, J. Biol. Chem. 265:540 (1990).

    Google Scholar 

  33. R. E. Stenkamp, L. C. Sieker, L. H. Jensen, J. Am. Chem. Soc. 106:618 (1984).

    Article  CAS  Google Scholar 

  34. B. C. Antanaitis and P. Aisen, Adv. Inorg. Biochem., 5:111 (1983).

    PubMed  CAS  Google Scholar 

  35. B. C. Antanaitis, P. Aisen, and H. R. Lilienthal, J. Biol. Chem. 258:3166 (1983).

    PubMed  CAS  Google Scholar 

  36. P. Reichard and A. Ehrenberg, Science 221:514 (1983).

    Article  PubMed  CAS  Google Scholar 

  37. P. Nordlund, B-M. Sjöberg and H. Eklund, Nature 345:593 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. T. J. McMurry and J. T. Groves, in: “Cytochrome P-450 Structure, Mechanism and Biochemistry”, P. R. Ortiz de Montellano, ed., pp 1–28. Plenum Press, New York (1986).

    Chapter  Google Scholar 

  39. G. A. Hamilton, in: “Molecular Mechanisms of Oxygen Activation” O. Hayaishi, ed., pp 405–451, Academic Press, New York (1974).

    Google Scholar 

  40. R. E. Miller and F. P. Guengerich, Biochemistry 21:1090 (1982).

    Article  PubMed  CAS  Google Scholar 

  41. M. J. Rataj, J. E. Kauth, and M. I. Donnelly, J. Biol. Chem. 266: (1991), in press.

    Google Scholar 

  42. J. T. Groves, G. A. McClusky, R. E. White, and M. J. Coon, Biochem. Biophys. Res. Commun. 81:154 (1978).

    Article  PubMed  CAS  Google Scholar 

  43. J. T. Groves and G. A. McClusky, J. Am. Chem. Soc. 98:859 (1976).

    Article  CAS  Google Scholar 

  44. E. G. Hrycay, J-Å. Gustafsson, M. Ingelman-Sundberg, and L. Ernster, FEBS Lett., 56:161 (1975).

    Article  PubMed  CAS  Google Scholar 

  45. A. D. Rahimtula and P. J. O’Brien, Biochem. Biophys. Res. Commun., 60:440 (1974).

    Article  PubMed  CAS  Google Scholar 

  46. K. K Andersson, W. A. Froland, S-K. Lee, and J. D. Lipscomb, New J. Chem. 15: (1991), in press.

    Google Scholar 

  47. J. B. Vincent, J. C. Huffman, G. Christou, Q. Li, M. A. Nanny, D. N. Hendrickson, R. H. Fong, and R. H. Fish, J. Am. Chem. Soc. 110:6898 (1988).

    Article  CAS  Google Scholar 

  48. B. P. Murch, F. C. Bradley, and L. Que, Jr., J. Am. Chem. Soc. 108:5027 (1986).

    Article  CAS  Google Scholar 

  49. N. Kitajima, H. Fukui, and Y. Moro-Oka, J. Chem. Soc.f Chem. Comm. 7:485 (1988).

    Article  Google Scholar 

  50. D. H. R. Barton, E. Csuhai, D. Doller, N. Ozbalik, and G. Balavoine, Proc. Natl. Acad. Sci., U. S. A. 87:3401 (1990).

    Article  PubMed  CAS  Google Scholar 

  51. R. A. Leising, R. E. Norman, and L. Que, Jr., Inorg. Chem. 29:2553 (1990).

    Article  CAS  Google Scholar 

  52. R. A. Leising, B. A. Brennen, L. Que, Jr., B. G. Fox, and E. Münck, E., J. Am. Chem. Soc. 113:3988(1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Froland, W.A., Andersson, K.K., Lee, SK., Liu, Y., Lipscomb, J.D. (1991). Oxygenation by Methane Monooxygenase: Oxygen Activation and Component Interactions. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics