Immobilized Artificial Membrane Chromatography: Surface Chemistry and Applications

  • Charles Pidgeon
  • Craig Marcus
  • Francisco Alvarez
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Immobilized Artificial Membranes are solid surfaces containing phospholipids immobilized on silica particles at surface densities similar to the ligand density of reversed phase Chromatographic surfaces. Chromatographic and non-chromatographic applications of Immobilized Artificial Membrane surfaces are reviewed and compared to the Chromatographie and non-chromatographic applications of reversed phase columns. The methodology for synthesizing Immobilized Artificial Membranes and the stability of Immobilized Artificial Membranes are also described. Several examples are presented regarding the ability of Immobilized Artificial Membrane surfaces to model biological processes. Examples include predicting the transport of solutes across human skin, predicting the transport of amino acids across the blood brain barrier, and predicting the binding of solutes to liposome membranes. In addition, the purification of several membrane proteins, including cytochrome P450 from rat adrenals and rat livers, NADH oxidase, and rabbit intestinal phospholipid binding protein, are discussed.


High Pressure Liquid Chromatography Reversed Phase Column Packing Material Artificial Membrane Propionic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pidgeon, C. “Immobilized Artificial Membrane” U.S. Patent 4, 931, 498 1990.Google Scholar
  2. 2.
    Pidgeon, C. “Method for Solid Membrane Mimetics” U.S. Patent 4, 927, 879 1990.Google Scholar
  3. 3.
    Thurnhofer, H., Schnabel, J., Betz, M., Lipka, G., Pidgeon, C, and Hauser, H. Biochim. et Biophvs. Acta 1991, 1064, 275–286.CrossRefGoogle Scholar
  4. 4.
    Chae, W.G., Luo, C., Rhee, D.M., Lombardo, C.R., Low, P., and Pidgeon, C. Modern Phytochemical Methods, in Recent Advances in Phytochemistry, 25:149–174. Plenum Press, N.Y. 1991. eds, N.H. Fischer, M.B. Isman, and H.A. Stafford.Google Scholar
  5. 5.
    Otto, S., Marcus, C., Pidgeon, C., and Jefcoate, C. “Purification of a Novel Adrenocorticotropin Inducible, Polycyclic Aromatic Hydrocarbon Metabolizing Cytochrome P450 from rat Adrenal Microsomes”. Endocrinology in press.Google Scholar
  6. 6.
    Pidgeon, C., Stevens, J., Otto, S., Jefcoate, C., and Marcus, C. Anal. Biochem. 1991, 194, 163–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Pidgeon, C., and Venkatarum, U.V. Anal. Biochem. 1989, 176, 36–47.PubMedCrossRefGoogle Scholar
  8. 8.
    Markovich, R. J., Stevens, J.M., and Pidgeon, C. Anal. Biochem. 1989, 182, 237–244.PubMedCrossRefGoogle Scholar
  9. 9.
    Stevens, J.M., Markovich, R.J., and Pidgeon, C. Biochromatography 1989, 4, 192–205.Google Scholar
  10. 10.
    Pidgeon, C. “Solid Phase Membrane Mimetics”. Enz. Microb. Technol. 1990, 12, 149–150.CrossRefGoogle Scholar
  11. 11.
    Markovich, R.J., Qiu, X.-X, Invergo, B., Nichols, D.E., Alvarez, F.A., and Pidgeon, C. End-Capping Immobilized Artificial Membrane Surfaces: Silica Subsurface Amines Affect Both the Chemical Stability and Chromatographic Properties of IAM surfaces. Anal. Chem. in press.Google Scholar
  12. 12.
    Miyake, K., Kitaura, F., Mizuno, N., and Terada, H. J. Chrom. 1987, 389, 47–56.CrossRefGoogle Scholar
  13. 13.
    Sandberg, M., Lundahl, P., Greijer, E., and Belew, M. Biophvs. Acta 1987, 924, 185–192.CrossRefGoogle Scholar
  14. 14.
    Yang, Q., Wallsten, M., and Lundahl, P. Biochim. et Biophys. Acta. 1988, 938, 243–256.CrossRefGoogle Scholar
  15. 15.
    Wallsten, M., Yang, Q., and Lundhal, P. Biochem. et Biophys. Acta 1989, 982, 47–52.CrossRefGoogle Scholar
  16. 16.
    Yang, Q., Wallsten, M, and Lundhal, P. J. Chrom. 1990, 506, 379–389.CrossRefGoogle Scholar
  17. 17.
    Lundhal, P., and Yang, Q., J. Chrom. 1991, 544, 283–304.CrossRefGoogle Scholar
  18. 18.
    Diem, T., Czajka, B., Weber, B., and Regen, S.L. J. Am.Chem. Soc. 1986, 108, 6094–6095.PubMedCrossRefGoogle Scholar
  19. 19.
    Hauser, H., Pascher, I., Pearson, R.H., and Sundell, S. Biochem. et Biophys. Acta 1981, 650, 21–51.CrossRefGoogle Scholar
  20. 20.
    Scott, D.L., Otwinowski, Z., Gelb, M.H., and Sigler, P.B. Science 1990, 250 1541–1546.PubMedCrossRefGoogle Scholar
  21. 21.
    White, S.P., Scott, S.L., Otwinowski, Z., Gelb, M.H., and Sigler, P.B. Science 1990, 250, 1560–1563.PubMedCrossRefGoogle Scholar
  22. 22.
    Scott, D.L., Otwinowski, Z., Gelb, M.H., and Sigler, P.B. Science 1990, 250, 1563–1566.PubMedCrossRefGoogle Scholar
  23. 23.
    Rock, C.O., and Snyder, F. J. Biol. Chem. 1975, 250, 6564–6566.PubMedGoogle Scholar
  24. 24.
    Kramer, R. M., Wuthrich, C., Bollier, C., Allegrini, P.R., and Zahler Biochim. et Biophysi. Acta 1978, 507, 381–394.CrossRefGoogle Scholar
  25. 25.
    Kirkland, J.J., Glach, J.L., and Farlee, R.D., Anal. Chem. 1989, 61, 2–11.CrossRefGoogle Scholar
  26. 26.
    Kohler, J. Chase, D.B., Farlee, R.D., Vega, A.J., and Kirkland, J.J. J. Chrom. 1986, 352, 275–305.CrossRefGoogle Scholar
  27. 27.
    Sagliano, N., G. Floyd, T.R., Hartwick, R.A., Dibussolo, J.M., and Miller, N.T. J. Chrom. 1988, 443, 155–172.CrossRefGoogle Scholar
  28. 28.
    Dill, K.A., J. Phys. Chem. 1987, 91, 1980–1988.CrossRefGoogle Scholar
  29. 29.
    Cole, L.A., and Dorsey, J.G. Anal. Chem. 1990, 62, 16–21.PubMedCrossRefGoogle Scholar
  30. 30.
    Colin, H., and Guiochon, G. J. Chrom. 1978, 158, 183–205.CrossRefGoogle Scholar
  31. 31.
    Klein, W., Koerdel, W., Weiss, M., and Poremski, H.J. Chemosphere 1988, 17, 361–366.CrossRefGoogle Scholar
  32. 32.
    Bodor, N., Gabanyi, Z., and Wong, C.K., J. Amer. Chem. Soc. 1988, 111, 3783–3786.CrossRefGoogle Scholar
  33. 33.
    Valko, K. J. Liq. Chrom. 1987, 10, 1663–1686.CrossRefGoogle Scholar
  34. 34.
    Minick, D.J., Sabatka, JJ., and Brent, D.A. J. Liq. Chrom. 1987, 10, 2565–2589.CrossRefGoogle Scholar
  35. 35.
    Minick, D.J., Frenz, J.H., Pastrick, M.A., and Brent, D. J. Med. Chem. 1988, 31, 1923–1933.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaliszan, R., Petrusewicz, J., Blain, R.W., and Hartwick, R.A., J. Chrom. 1988, 458, 395–404.CrossRefGoogle Scholar
  37. 37.
    Floyd, D.M., Moquin, R.V., Atwal, K.S., Ahmed, S.Z., Spergel, S.H., Gougoutas, J.Z., and Malley, M.F. J. Org. Chem. 1990, 55, 5572–5579.CrossRefGoogle Scholar
  38. 38.
    Rassi, Z.E. Biochrom. 1988, 3, 188–200.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Charles Pidgeon
    • 1
  • Craig Marcus
    • 2
  • Francisco Alvarez
    • 3
  1. 1.Department of Medicinal Chemistry and PharmacognosyPurdue UniversityWest LafayetteUSA
  2. 2.Department of Pharmacology and ToxicologyPurdue UniversityWest LafayetteUSA
  3. 3.Schering Plough CorporationKenilworthUSA

Personalised recommendations