Skip to main content

Dehalogenation of Organohalide Pollutants by Bacterial Enzymes and Coenzymes

  • Chapter
Applications of Enzyme Biotechnology

Abstract

Organohalides are widespread environmental pollutants which typically contain a carbon-halogen bond. The halogen substituent can be fluorine, chlorine, bromine, or iodine but chlorine is most common. The environmental fate of organohalides is dominated by the chemistry of the carbon-halogen bond of particular compounds. For example, fluorocarbons are particularly inert. This is due in large measure to the high bond dissociation energy of the carbon-fluorine bond which ranges from 106–115 Kcal/mol (Reinecke, 1984). Chlorinated compounds differ markedly in their environmental persistence. Generally, aryl and alkenyl chlorides decompose much more slowly than alkyl chlorides. The former compounds undergo hydrolytic and photolytic cleavage of the carbon-halogen bond much less readily. Environmental organohalides often derive from industrial sources, but many halogenated organic natural products are known as well. Commodity organic chemicals that contain chlorine include vinyl chloride, trichloroethylene, dichloromethane, 1, 2-dichloroethane, and chlorobenzene. Each of these compounds are used by United States industries at levels exceeding ten million pounds annually (Hutzinger & Veerkamp, 1981). Several natural products such as methyl chloride (Wuosmaa & Hager, 1990) and tribromomethane (Gschwend, et al., 1985) are released into the environment at comparable levels on a global scale by fungi and algae, respectively. As an illustration of the complexity of this group of compounds, over 700 halogenated natural products have been identified (Neidleman & Geigert, 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, A. E. & Anders, M. W. 1978. Metabolism of dihalomethanes to formaldehyde and inorganic halide II. Studies on the mechanism of the reaction. Biochem. Pharmacol. 27:2021.

    Article  PubMed  CAS  Google Scholar 

  • Anders, M. W. & Pohl, L. R. 1985. Halogenated alkanes. In “Bioactivation of Foreign Compounds, ” ed. M. W. Anders. Academic Press, New York.

    Google Scholar 

  • Arciero, D., Vannelli, T., Logan, M. & Hooper, A. B. 1989. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 159:640–643.

    Article  PubMed  CAS  Google Scholar 

  • Atlas, R. M. and Bartha, R. 1987. “Microbial Ecology, ” Benjamin/Cumming Pub., Menlo Park, CA.

    Google Scholar 

  • Au, K. & Walsh, C. T. Stereochemical studies on a plasmid-encoded fluoracetate halidohydrolase. Bioorg. Chem. 12:197–205.

    Google Scholar 

  • Berry, E. K. M., Allison, N., Skinner, A. J. & Cooper, R. A. 1979. Degradation of the selective herbicide 2, 2-dichloropropionate (dalapon) by a soil bacterium. J. Gen. Microbiol. 110:39–45.

    Article  CAS  Google Scholar 

  • Böhme, H., Fischer, H. & Frank, R. 1949. Justus Liebig Annln. Chem. 563:54.

    Article  Google Scholar 

  • DeWeerd, K. A. & Suflita, J. M. 1990. Anarobic arylreductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei, Appl. Environ. Microbiol. 56:2999.

    PubMed  CAS  Google Scholar 

  • Dolfing, J. 1990. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in anaerobic bacterium, strain DCB-1. Arch. Microbiol. 153:264–266.

    Article  PubMed  CAS  Google Scholar 

  • Folsom, B. R., Chapman, P. J. & Pritchard, P. H. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interaction between substrates. Appl Environ. Microbiol. 56:1279–1285.

    PubMed  CAS  Google Scholar 

  • Fox, B. G., Borneman, J. G., Wackett, L. P. & Lipscomb, J. D. 1990. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: Mechanistic and environmental implications. Biochemistry 29:6419–6427.

    Article  PubMed  CAS  Google Scholar 

  • Gälli, R., Stucki, G. & Leisinger, T. 1982. Mechanism of dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Experientia 38:1378.

    Google Scholar 

  • Gantzer, G. J. & Wackett, L. P. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ. Sci Tech. (in press).

    Google Scholar 

  • Goldman, P., Milne, G. W. A. & Keister, D. B., 1968. Carbon-halogen bond cleavage: Studies on bacterial halidohydrolases. J. Biol Chem. 243:428–434.

    PubMed  CAS  Google Scholar 

  • Gschwend, P. M., MacFarlane, J. K. & Newman, K. A. 1985. Volatile halogenated organic compounds released to seawater from temparate marine microalgae. Science 227:1033–1035.

    Article  PubMed  CAS  Google Scholar 

  • Hambright, P. 1975. In “Porphyrins and Metalloporphyrins,” Smith, K. M., ed., Elsevier Scientific, Amsterdam, p. 233.

    Google Scholar 

  • Harker, A. R. & Kim, Y. 1990. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl Environ. Microbiol. 56:1179–1181.

    PubMed  CAS  Google Scholar 

  • Hogenkamp, H. P. C. 1975. In “Cobalamin: Biochemistry and Pathophysiology,” Babior, B. M., ed, John-Wiley & Sons, NY, p. 21.

    Google Scholar 

  • Hutzinger, O., Veerkamp, W. 1981. In “Microbial Degradation of Xenobiotic and Recalcitrant Compounds,” Leisinger, T., Cook, A., Hutter, R., Nuesch, J., eds. Academic Press, London, p. 3.

    Google Scholar 

  • Janssen, D. B., Pries, F., Van der Ploeg, J., Kazemier, B., Terpstra, P., & Witholt, B. 1989. Cloning of 1, 2-dichloroethane degradation genes of Xanthobacter autotrophicus and expression and sequencing of the dhl A. gene. J. Bacteriol. 171:6791.

    PubMed  CAS  Google Scholar 

  • Kawasaki, H., Miyoshi, K. & Tonomura, K. 1981. Purification, crystallization and properties of haloacetate halidohydrolase from Pseudomonas species. Agric. Biol Chem. 45:543–544.

    Article  CAS  Google Scholar 

  • Keen, J. H., Habig, W. H. & Jakoby, W. B. 1976. Mechanism for the several activities of the glutathione S-transferases. J. Biol Chem. 251:6183–6188.

    PubMed  CAS  Google Scholar 

  • Klecka, G. M. & Gonsior, S. J. 1984. Reductive dechlorination of chlorinated methanes and ethanes by reduced iron(II) porphyrins. Chemosphere 13:391.

    Article  CAS  Google Scholar 

  • Kohler-Staub, D. & Leisinger, T. 1985. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162:676–681.

    PubMed  CAS  Google Scholar 

  • Krone, U. E., Laufer, K., Thauer, R. K. & Hogenkamp, H. P. C. 1989a. Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28:10061–10065.

    Article  PubMed  CAS  Google Scholar 

  • Krone, U. E., Thauer, R. K. & Hogenkamp, H. P. C. 1989b. Reductive dechlorination of chlorinated C1-hydrocarbons mediated by corrinoids. Biochemistry 28:4908–4914.

    Article  CAS  Google Scholar 

  • Leisinger, T. 1983. Microorganisms and xenobiotic compounds. Experientia 39:1183–1191.

    Article  PubMed  CAS  Google Scholar 

  • Markus, A., Klages, V., Krauss, S., & Lingens, F. 1984. Oxidation and dehalogenation of 4-chlorophenylacetate by a two-component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol. 160:618.

    PubMed  CAS  Google Scholar 

  • Nash, T. 1953. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem. J. 55:416–421.

    PubMed  CAS  Google Scholar 

  • Neidleman, S. L. & J. Geigert. 1986. “Biohalogenation: Principles, Basic Roles and Applications,” John Wiley, New York.

    Google Scholar 

  • Nelson, M. J., Montgomery, S. O. & Pritchard, P. H. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl Environ. Microbiol. 54:604–606.

    PubMed  CAS  Google Scholar 

  • Oldenhuis, R., Vink, R. L., Vink, J. M., Janssen, D. B. & Witholt, B. 1989. Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55:2819–2826.

    PubMed  CAS  Google Scholar 

  • Parsons, F., Wood, P. R. & DeMarco, J. 1984. Transformation of tetrachloroethene and trichloroethene in microcosms and groundwater. J. Am. Water Works Assoc. 76:56–59.

    CAS  Google Scholar 

  • Reineke, W. 1984. Microbial degradation of halogenated aromatic compounds. In “Microbial Degradation of Organic Compounds,” Gibson, D. T., ed., Marcel Dekker, New York, pp. 319–360.

    Google Scholar 

  • Salomaa, P. 1966. Formation of carbonyl groups in hydrolytic reactions. In “The Chemistry of the Carbonyl Group, ” S. Patai, ed. Wiley Interscience, New York, pp. 177–210.

    Google Scholar 

  • Scholtz, R., Wackett, L. P., Egli, C., Cook, A. M. & Leisinger, T. 1988. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol. 170:5698–5704.

    PubMed  CAS  Google Scholar 

  • Shaik, S. S. 1985. The collage of SN2 reactivity patterns: A state correlation diagram model. In “Progress in Physical Organic Chemistry,” R. W. Taft, ed., Wiley & Sons, NY.

    Google Scholar 

  • Storck, W. 1987. Chlorinated solvent use hurt by federal rules. Chem. Eng. News 65:11.

    Google Scholar 

  • Stucki, G., Gälli, R., Ebersold, H-R. & Leisinger, T. 1981. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 130:366–371.

    Article  CAS  Google Scholar 

  • Tsien, H.-C., Brusseau, G. A., Hanson, R. S. & Wackett, L. P. 1989. Biodegradation of trichloroethylene by Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55:3155–3161.

    PubMed  CAS  Google Scholar 

  • Van den Wijngaard, A. J., Reuvekamp, P. T. & Janssen, D. B. 1991 Purification and characterization of haloalcohol dehalogenase from Arthrobacter sp. strain AD2. J. Bacteriol. 173; 124.

    PubMed  Google Scholar 

  • Wackett, L. P. & Gibson, D. T. 1988. Degradation of trichloroethylene by toluene dioxygenase in whole cell studies with Pseudomonas putida Fl. Appl. Environ. Microbiol. 54:1703–1708.

    PubMed  CAS  Google Scholar 

  • Wackett, L. P., Brusseau, G. A. & Hanson, R. S. 1989. Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960–2964.

    PubMed  CAS  Google Scholar 

  • Walsh, C. T. & Orme-Johnson, W. H. 1987. Nickel enzymes. Biochemistry 26:4901.

    Article  PubMed  CAS  Google Scholar 

  • Winter, R. B., Yen, K.-M. & Ensley, B. D. 1989. Efficient degradation of trichloroethylene by a recombinant Escherichia coll Biotechnology 7:282–285.

    CAS  Google Scholar 

  • Wolfe, R. S. 1985. Unusual coenzymes of methanogenesis. Trends. Biochem. Sci. 10:396.

    Article  CAS  Google Scholar 

  • Wuosmaa, A. M. & Hager, L. P. 1990. Methyl chloride transferase: A carbocation route for biosynthesis of halometabolites. Science 249:160–162.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wackett, L.P. (1991). Dehalogenation of Organohalide Pollutants by Bacterial Enzymes and Coenzymes. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics