Skip to main content

Organophosphorus Cholinesterase Inhibitors: Detoxification by Microbial Enzymes

  • Chapter

Abstract

Numerous organophosphorus compounds of importance in agriculture, medicine, military defense, and research have been shown to be potent inhibitors of cholinesterases and other enzymes with active serine residues in their active sites. Over the past 45 years a variety of enzymes that catalytically hydrolyze and detoxify these compounds have been described and characterized to varying degrees. Enzymes of this type have been found in both procaryotes and eucaryotes, but microbial sources have been of increased interest for a variety of reasons. These include their potential for production through large-scale fermentation, the relative ease of their physical and chemical manipulation, and their generally simpler genetic makeup which makes cloning of the enzyme genes potentially easier and more straightforward.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adie, P. A. “The purification of sarinase from bovine plasma.” Can. J. Biochem. Physiol. 34: 1091–1094, 1956.

    Article  PubMed  CAS  Google Scholar 

  2. Adie, P. A., F. C. G. Hoskin and G. S. Trick. “Kinetics of the enzymatic hydrolysis of sarin.” Can. J. Biochem. Physiol. 34: 80–82, 1956.

    Article  PubMed  CAS  Google Scholar 

  3. Adie, P. A. and J. Tuba. “The intracellular localization of liver and kidney sarinase.” Can. J. Biochem. Physiol. 36: 21–24, 1958.

    Article  PubMed  CAS  Google Scholar 

  4. Albizo, J. J. and W. E. White. Personal communication.

    Google Scholar 

  5. Aldridge, W. N. “Serum esterases 1. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate and a method for their determination.” Biochem. J. 53: 110–124, 1953.

    PubMed  CAS  Google Scholar 

  6. Anderson, R. S., H. D. Durst and W. G. Landis. “Initial characterization of the organophosphate acid anhydrase activity in the clam, Rangia cuneata.” Comp. Biochem. Phys. 91C: 575–579, 1988.

    CAS  Google Scholar 

  7. Attaway, H., J. O. Nelson, A. M. Baya, M. J. Voll, W. E. White, D. J. Grimes and R. R. Colwell. “Bacterial detoxification of diisopropyl fluorophosphate.” Appl. Envir. Microbiol. 53: 1685–1689, 1987.

    CAS  Google Scholar 

  8. Augustinsson, K.-B. “The enzymatic hydrolysis of organophosphorus compounds.” Biochem. Biophys. Acta. 13: 303–304, 1954.

    Article  PubMed  CAS  Google Scholar 

  9. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds I, Occurrence of enzymes hydrolyzing dimethylamido-ethoxy-phosphoryl cyanide (tabun).” Acta Chem. Scand. 8(5): 753–761, 1954.

    Article  CAS  Google Scholar 

  10. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds II. Analysis of reaction products in experiments with tabun and some properties of blood plasma tabunase.” Acta Chem. Scand. 8(5): 762–767, 1954.

    Article  CAS  Google Scholar 

  11. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds IV. Specificity studies.” Acta Chem. Scand. 8(9): 1533–1541, 1954.

    Article  CAS  Google Scholar 

  12. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds V. Effect of phosphorylphosphatase on inactivation of cholinesterases by organophosphorus compounds in vitro.” Acta Chem. Scand. 9(2): 310–318, 1955.

    Article  CAS  Google Scholar 

  13. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds VI. Effect of metallic ions on the phosphorylphosphatases of human and swine kidney.” Acta Chem. Scand. 9(3): 383–392, 1955.

    Article  CAS  Google Scholar 

  14. Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds VII. The stereospecificity of phosphorylphosphatases.” Acta Chem. Scand. 11(8): 1371–1377, 1957.

    Article  CAS  Google Scholar 

  15. Broomfield, C. A. Personal communication.

    Google Scholar 

  16. Caldwell, S. R. and F. M. Raushel. “Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta.” Biotechnol. Bioeng. 37: 103–109, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Chaudry, G. R, A. N. Ali and W. B. Wheeler. “Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp.” Appl. Environ. Microbiol. 54: 288–293, 1988.

    Google Scholar 

  18. Cheng, T.-c. “Unpublished data.”

    Google Scholar 

  19. Chettur, G., J. J. DeFrank, B. J. Gallo, F. C. G. Hoskin, S. Mainer, F. M. Robbins, K. E. Steinmann and J. E. Walker. “Soman-hydrolyzing and-detoxifying properties of an enzyme from a thermophilic bacterium.” Fund. Appl. Toxicol. 11: 373–380, 1988.

    Article  CAS  Google Scholar 

  20. Chiang, T., M. C. Dean and C. S. McDaniel. “A fruit fly bioassay with phosphotriesterase for detection of certain organophosphorus insecticide residues.” Bull. Environ. Contain. Toxicol. 34: 809–814, 1985.

    Article  CAS  Google Scholar 

  21. Cohen, J. A. and M. G. P. J. Warringa. “Purification and properties of dialkylfluoro-phosphatase.” Biochem. Biophys. Acta. 26: 29–39, 1957.

    Article  PubMed  CAS  Google Scholar 

  22. Coppella, S. J., N. DelaCruz, G. F. Payne, B. M. Pogel, M. K. Speedie, J. S. Karns, E. M. Sybert and M. A. Connor. “Genetic engineering approach to toxic waste management: Case study for organophosphate waste treatment.” Biotechnol. Prog. 6: 76–81, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Daughton, C. G. and D. P. H. Hsieh. “Parathion utilization by bacterial symbionts in achemostat.” Appl. Environ. Microbiol. 34: 175–184, 1977.

    PubMed  CAS  Google Scholar 

  24. DeFrank, J. J. “Unpublished data.”

    Google Scholar 

  25. DeFrank, J. J. and T.-c. Cheng. “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate.” J. Bacteriol. 173: 1991.

    Google Scholar 

  26. Dumas, D. P., S. R. Caldwell, J. R. Wild and F. M. Raushel. “Purification and properties of the phosphotriesterase from Pseudomonas diminuta” J. Biol. Chem. 264: 19659–19665, 1989.

    PubMed  CAS  Google Scholar 

  27. Dumas, D. P., H. D. Durst, W. G. Landis, F. M. Raushel and J. R. Wild. “Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta” Arch. Biochem. Biophys. 277: 155–159, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Gallo, B. J. Personal communication.

    Google Scholar 

  29. Garden, J. M., S. K. Hause, F. C. G. Hoskin and A. H. Roush. “Comparison of DFP-hydrolyzing enzyme purified from head ganglia and hepatopancreas of squid (Loligo pealei) by means of isoelectric focusing.” Comp. Biochem. Physiol. 52C: 95–98, 1975.

    Google Scholar 

  30. Gay, D. D. and F. C. G. Hoskin. “Stereospecificity and active site requirements in a diisopropylphosphorofluoridate-hydrolyzing enzyme.” Biochem. Pharmacol. 28: 1259–1261, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Harper, L. L., C. S. McDaniel, C. E. Miller and J. R. Wild. “Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.” Appl. Environ. Microbiol. 54: 2586–2589, 1988.

    PubMed  CAS  Google Scholar 

  32. Hoskin, F. C. G. “The enzymatic hydrolysis products of sarin.” Can. J. Biochem. Physiol. 34: 75–79, 1956.

    Article  PubMed  CAS  Google Scholar 

  33. Hoskin, F. C. G. “Possible significance of “DFPase” in squid nerve.” Biol. Bull. 137: 389–390, 1969.

    Google Scholar 

  34. Hoskin, F. C. G. “Diisopropylphosphorofluoridate and tabun: Enzymatic hydrolysis and nerve function.” Science. 172: 1243–1245, 1971.

    Article  PubMed  CAS  Google Scholar 

  35. Hoskin, F. C. G. “Distribution of diisopropylphosphorofluoridate-hydrolyzing enzyme between sheath and axoplasm of squid giant axon.” J. Neurochem. 26: 1043–1045, 1976.

    Article  PubMed  CAS  Google Scholar 

  36. Hoskin, F. C. G. “An organophosphorus detoxifying enzyme unique to squid.” Squid as Experimental Animals. Gilbert and Adelman ed. in press Plenum. New York.

    Google Scholar 

  37. Hoskin, F. C. G., G. Chettur, S. Mainer, K. E. Steinmann, J. J. DeFrank, B. J. Gallo, F. M. Robbins and J. E. Walker. “Soman hydrolysis and detoxication by a thermo-philic bacterial enzyme.” Enzymes Hydrolysing Organophosphorus Compounds. Reiner, Aldridge and Hoskin ed. 1989 Ellis Horwood. England.

    Google Scholar 

  38. Hoskin, F. C. G., J. J. DeFrank, B. J. Gallo and J. E. Walker. Isomers of soman as research tools for the study of organophosphorus acid (OPA) anhydrases (formerly DFPases). Third International Symposium on Protection Against Chemical Warfare Agents. 187-194, 1989.

    Google Scholar 

  39. Hoskin, F. C. G., M. A. Kirkish and K. E. Steinmann. “Two enzymes for the detoxification of organophosphorus compounds-sources, similarities and significance.” Tox. Appl. Pharmacol. 4: S165–S172, 1984.

    CAS  Google Scholar 

  40. Hoskin, F. C. G. and R. J. Long. “Purification of a DFP-hydrolyzing enzyme from squid head ganglion.” Arch. Biochem. Biophys. 150: 548–555, 1972.

    Article  PubMed  CAS  Google Scholar 

  41. Hoskin, F. C. G. and R. D. Prusch. “Characterization of a DFP-hydrolyzing enzyme in squid posterior salivary gland by use of soman, DFP and manganous ion.” Comp. Biochem. Physiol. 75C(1): 17–20, 1983.

    CAS  Google Scholar 

  42. Hoskin, F. C. G., K. S. Rajan and K. E. Steinmann. “Organophosphorus acid (OPA) anhydrase from squid: a calcium-dependent P-F splitting enzyme.” Biol. Bull. 175: 305–306, 1988.

    Google Scholar 

  43. Hoskin, F. C. G., P. Rosenbery and M. Brzin. “Re-examination of the effect of DFP on electrical and cholinesterase activity of squid giant axon.” Proc. Nat. Acad. Sci. USA. 55: 1231–1235, 1966.

    Article  PubMed  CAS  Google Scholar 

  44. Hoskin, F. C. G. and A. H. Roush. “Hydrolysis of nerve gas by squid type diisopropyl-phosphorofluoridate hydrolyzing enzyme on agarose resin.” Science. 215: 1255–1257, 1982.

    Article  PubMed  CAS  Google Scholar 

  45. Hoskin, F. C. G. and G. S. Trick. “Stereospecificity in the enzymatic hydrolysis of tabun and acetyl-β-methylcholine chloride.” Can. J. Biochem. Physiol. 33: 963–969, 1955.

    Article  PubMed  CAS  Google Scholar 

  46. Kaaijk, J. and C. Frijlink. “Degradation of S-2-diisopropylaminoethyl O-ethyl methylphosphonothiolate in soil. Sulphur-containing products.” Pestic. Sci. 8: 510–514, 1977.

    Article  CAS  Google Scholar 

  47. Landis, W. G. and J. J. DeFrank. Enzymatic hydrolysis of toxic organofluorophos-phate compounds. International Workshop on Biotechnology and Biodegradation. 4: 183–201, 1989.

    Google Scholar 

  48. Landis, W. G., D. M. Haley, M. V. Haley, D. W. Johnson, H. D. Durst and R E. Savage Jr. “Discovery of multiple organofluorophosphate hydrolyzing activities in the protozoan Tetrahymena thermophila.” J. Appl. Toxicol. 7(1): 35–41, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Landis, W. G., M. V. Haley and D. W. Johnson. “Kinetics of the DFPase activity in Tetrahymena thermophila” J. Protozool. 33: 216–218, 1986.

    PubMed  CAS  Google Scholar 

  50. Landis, W. G., R. E. Savage Jr. and F. C. G. Hoskin. “An organofluorophosphate-hydrolyzing activity in Tetrahymena thermophila.” J. Protozool. 32(3): 517–519, 1985.

    PubMed  CAS  Google Scholar 

  51. Lewis, V. E., W. J. Donarski, J. R. Wild and F. M. Raushel. “Mechanism and stereo-chemical course at phosphorus of the reaction catalyzed by a bacterial phospho-triesterase.” Biochemistry. 27: 1591–1597, 1988.

    Article  PubMed  CAS  Google Scholar 

  52. Little, J. S., C. A. Broomfield, L. J. Boucher and M. K. Fox-Talbot. “Partial characterization of a rat liver enzyme that hydrolyzes sarin, soman, tabun and DFP.” Fed. Proc. 45(4): 791, 1986.

    Google Scholar 

  53. Main, A. R. “The differentiation of the A-type esterases in sheep serum.” Biochem. J. 75: 188–195, 1960.

    PubMed  CAS  Google Scholar 

  54. Main, A. R. “The purification of the enzyme hydrolyzing diethyl p-nitrophenyl phosphate (paraoxon) in sheep serum.” Biochem. J. 74: 10–20, 1960.

    PubMed  CAS  Google Scholar 

  55. Mazur, A. “An enzyme in animal tissue capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates.” J. Biol. Chem. 164: 271–289, 1946.

    PubMed  CAS  Google Scholar 

  56. McCombie, H. and B. C. Saunders. “Alkyl fluorophosphonates: Preparation and physiological properties.” Nature (London). 157: 287–289, 1946.

    Article  CAS  Google Scholar 

  57. McDaniel, C. S., L. L. Harper and J. R Wild. “Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase.” J. Bacteriol. 170: 2307–2311, 1988.

    Google Scholar 

  58. McEwen, F. L. and G. R. Stephenson. “The Use and Significance of Pesticides in the Environment.” 1979 Wiley-Interscience. New York.

    Google Scholar 

  59. Middlebrook, J. L. and R. B. Dorland. “Bacterial toxins: Cellular mechanisms of action.” Microbiol. Rev. 48: 199–221, 1984.

    PubMed  CAS  Google Scholar 

  60. Mounter, L. A. “The complex nature of dialkylfluorophosphatases of hog and rat liver and kidney.” J. Biol. Chem. 215: 705–709, 1955.

    PubMed  CAS  Google Scholar 

  61. Mounter, L. A. Metabolism of organophosphorus anticholinesterase agents. Hanbuch de Experimentellen Pharmakologie: Cholinesterases and Anticholinesterase Agents. 486-504, 1963.

    Google Scholar 

  62. Mounter, L. A., R. F. Baxter and A. Chanutin. “Dialkylfluorophosphatases of microorganisms.” J. Biol. Chem. 215: 699–704, 1955.

    PubMed  CAS  Google Scholar 

  63. Mounter, L. A. and L. T. H. Dien. “Dialkylfluorophosphatase of kidney V. The hydrolysis of organophosphorus compounds.” J. Biol. Chem. 219: 685–690, 1956.

    PubMed  CAS  Google Scholar 

  64. Mounter, L. A., L. T. H. Dien and A. Chanutin. “The distribution of dialkylfluorophosphatases in the tissues of various species.” J. Biol. Chem. 215: 691–697, 1955.

    PubMed  CAS  Google Scholar 

  65. Mounter, L. A., C. S. Floyd and A. Chanutin. “Dialkylfluorophosphatase of kidney I. Purification and properties.” J. Biol. Chem. 204: 221–232, 1953.

    PubMed  CAS  Google Scholar 

  66. Mounter, L. A. and K. D. Tuck. “Dialkylfluorophosphatase of microorganisms II. Substrate specificity studies.” J. Biol. Chem. 221: 537–541, 1956.

    PubMed  CAS  Google Scholar 

  67. Mulbry, W. W. and J. S. Karns. “Purification and characterization of three para-thion hydrolases from Gram-negative bacterial strains.” Appl. Environ. Microbiol. 55: 289–293, 1989.

    PubMed  CAS  Google Scholar 

  68. Mulbry, W. W., J. S. Karns, P. C. Kearney, J. D. Nelson, C. S. McDaniel and J. R. Wild. “Identification of a plasmid-borne parathion hydrolase gene from Flavobact-erium sp. by Southern hybridization with opd from Pseudomonas diminuta.” Appl. Environ. Microbiol. 51: 926–930, 1986.

    PubMed  CAS  Google Scholar 

  69. Munnecke, D. M. “Enzymic hydrolysis of organophosphate insecticides, a possible pesticide disposal method.” Appl. Environ. Microbiol. 32: 7–13, 1976.

    PubMed  CAS  Google Scholar 

  70. Munnecke, D.M. “Enzymatic detoxification of waste organophosphate pesticides.” Agric. Food Chem. 28: 105–111, 1980.

    Article  CAS  Google Scholar 

  71. Nelson, L. M. “Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria.” Soil Biol. Biochem. 14: 219–222, 1982.

    Article  CAS  Google Scholar 

  72. Pogell, B. M., S. S. Rowland, K. E. Steinmann, M. K. Speedie and F. C. G. Hoskin. “Genetic and biochemical evidence for the lack of significant hydrolysis of soman by a Flavobacterium parathion hydrolase.” Appl. Environ. Microbiol. 57:610–611, 1991.

    PubMed  CAS  Google Scholar 

  73. Racke, K. D. and J. R. Coats. “Enhanced degradation of isofenphos by soil micro organisms.” J. Agric. Food Chem. 35: 94–99, 1987.

    Article  CAS  Google Scholar 

  74. Reiner, E., W. N. Aldridge and F. C. G. Hoskin. Enzymes Hydrolyzing Organophosphorus Compounds. 1989.

    Google Scholar 

  75. Rosenberg, A. and M. Alexander. “Microbial cleavage of organophosphorus insecticides.” Appl. Environ. Microbiol. 37: 886–891, 1979.

    PubMed  CAS  Google Scholar 

  76. Rowland, S. S., M. S. Speedie and B. M. Pogell. “Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans.” Appl. Environ. Microbiol. 57: 440–444, 1991.

    PubMed  CAS  Google Scholar 

  77. Serdar, C. M. and D. T. Gibson. “Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta.” Bio/Technology. 3: 567–571, 1985.

    Article  CAS  Google Scholar 

  78. Serdar, C. M., D. T. Gibson, D. M. Munnecke and J. H. Lancaster. “Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta.” Appl. Environ. Microbiol. 44: 246–249, 1982.

    PubMed  CAS  Google Scholar 

  79. Serdar, C. M., D. C. Murdock and M. F. Rohde. “Parathion hydrolase gene from Pseudomonas diminuta MG: Subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli.” Bio/ Technology. 7: 1151–1155, 1989.

    CAS  Google Scholar 

  80. Sethunathan, N. and T. Yoshida. Degradation of parathion in flooded acid soils. Institute of Environmental Science 18th Technical Meeting. 255-257, 1972.

    Google Scholar 

  81. Sethunathan, N. and T. Yoshida. “A Flavobacterium that degrades diazinon and parathion.” Can. J. Microbiol. 19: 873–875, 1973.

    Article  PubMed  CAS  Google Scholar 

  82. Sheela, S. and S. B. Pai. “Metabolism of fensulfothion by a soil bacterium, Pseudomonas alcaligenes C1.” Appl. Environ. Microbiol. 46: 475–479, 1983.

    PubMed  CAS  Google Scholar 

  83. Shelton, D. R. and C. J. Somich. “Isolation and characterization of coumaphos-metabolizing bacteria from cattle dip.” Appl. Environ. Microbiol. 54: 2566–2571, 1988.

    PubMed  CAS  Google Scholar 

  84. Siddaramappa, R., K. P. Rajaram and N. Sethunathan. “Degradation of parathion by bacteria isolated from flooded soil.” Appl. Microbiol. 26: 846–849, 1973.

    PubMed  CAS  Google Scholar 

  85. Steiert, J. G., B. M. Pogell, M. K. Speedie and J. Laredo. “A gene coding for a mem brane-bound hydrolase is expressed as a secreted, soluble enzyme in Streptomyces lividans.” Bio/Technology. 7: 65–68, 1989.

    Article  CAS  Google Scholar 

  86. Szafraniec, L. L. and W. T. Beaudry. Personal communication.

    Google Scholar 

  87. Talbot, H. W., L. Johnson, S. Barik and D. Williams. “Properties of a Pseudomonas sp.-derived parathion hydrolase immobilized to porous glass and activated alumina.” Biotechnol. Letters. 4: 209–214, 1982.

    Article  CAS  Google Scholar 

  88. Wild, J. R. Personal communication.

    Google Scholar 

  89. Zech, R. and K. D. Wigand. “Organophosphate-detoxicating enzymes in E. coli. Gel filtration and isoelectric focusing of DFPase, paraoxonase and unspecific phos-phohydrolases.” Experientia. 15: 157–158, 1975.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

DeFrank, J.J. (1991). Organophosphorus Cholinesterase Inhibitors: Detoxification by Microbial Enzymes. In: Kelly, J.W., Baldwin, T.O. (eds) Applications of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9235-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9235-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9237-9

  • Online ISBN: 978-1-4757-9235-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics