Organophosphorus Cholinesterase Inhibitors: Detoxification by Microbial Enzymes

  • Joseph J. DeFrank
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Numerous organophosphorus compounds of importance in agriculture, medicine, military defense, and research have been shown to be potent inhibitors of cholinesterases and other enzymes with active serine residues in their active sites. Over the past 45 years a variety of enzymes that catalytically hydrolyze and detoxify these compounds have been described and characterized to varying degrees. Enzymes of this type have been found in both procaryotes and eucaryotes, but microbial sources have been of increased interest for a variety of reasons. These include their potential for production through large-scale fermentation, the relative ease of their physical and chemical manipulation, and their generally simpler genetic makeup which makes cloning of the enzyme genes potentially easier and more straightforward.


Methyl Parathion Nerve Agent Organophosphorus Compound Organophosphorus Pesticide sqUid Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adie, P. A. “The purification of sarinase from bovine plasma.” Can. J. Biochem. Physiol. 34: 1091–1094, 1956.PubMedCrossRefGoogle Scholar
  2. 2.
    Adie, P. A., F. C. G. Hoskin and G. S. Trick. “Kinetics of the enzymatic hydrolysis of sarin.” Can. J. Biochem. Physiol. 34: 80–82, 1956.PubMedCrossRefGoogle Scholar
  3. 3.
    Adie, P. A. and J. Tuba. “The intracellular localization of liver and kidney sarinase.” Can. J. Biochem. Physiol. 36: 21–24, 1958.PubMedCrossRefGoogle Scholar
  4. 4.
    Albizo, J. J. and W. E. White. Personal communication.Google Scholar
  5. 5.
    Aldridge, W. N. “Serum esterases 1. Two types of esterase (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate and a method for their determination.” Biochem. J. 53: 110–124, 1953.PubMedGoogle Scholar
  6. 6.
    Anderson, R. S., H. D. Durst and W. G. Landis. “Initial characterization of the organophosphate acid anhydrase activity in the clam, Rangia cuneata.” Comp. Biochem. Phys. 91C: 575–579, 1988.Google Scholar
  7. 7.
    Attaway, H., J. O. Nelson, A. M. Baya, M. J. Voll, W. E. White, D. J. Grimes and R. R. Colwell. “Bacterial detoxification of diisopropyl fluorophosphate.” Appl. Envir. Microbiol. 53: 1685–1689, 1987.Google Scholar
  8. 8.
    Augustinsson, K.-B. “The enzymatic hydrolysis of organophosphorus compounds.” Biochem. Biophys. Acta. 13: 303–304, 1954.PubMedCrossRefGoogle Scholar
  9. 9.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds I, Occurrence of enzymes hydrolyzing dimethylamido-ethoxy-phosphoryl cyanide (tabun).” Acta Chem. Scand. 8(5): 753–761, 1954.CrossRefGoogle Scholar
  10. 10.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds II. Analysis of reaction products in experiments with tabun and some properties of blood plasma tabunase.” Acta Chem. Scand. 8(5): 762–767, 1954.CrossRefGoogle Scholar
  11. 11.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds IV. Specificity studies.” Acta Chem. Scand. 8(9): 1533–1541, 1954.CrossRefGoogle Scholar
  12. 12.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds V. Effect of phosphorylphosphatase on inactivation of cholinesterases by organophosphorus compounds in vitro.” Acta Chem. Scand. 9(2): 310–318, 1955.CrossRefGoogle Scholar
  13. 13.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds VI. Effect of metallic ions on the phosphorylphosphatases of human and swine kidney.” Acta Chem. Scand. 9(3): 383–392, 1955.CrossRefGoogle Scholar
  14. 14.
    Augustinsson, K.-B. and G. Heimburger. “Enzymatic hydrolysis of organophosphorus compounds VII. The stereospecificity of phosphorylphosphatases.” Acta Chem. Scand. 11(8): 1371–1377, 1957.CrossRefGoogle Scholar
  15. 15.
    Broomfield, C. A. Personal communication.Google Scholar
  16. 16.
    Caldwell, S. R. and F. M. Raushel. “Detoxification of organophosphate pesticides using an immobilized phosphotriesterase from Pseudomonas diminuta.” Biotechnol. Bioeng. 37: 103–109, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Chaudry, G. R, A. N. Ali and W. B. Wheeler. “Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp.” Appl. Environ. Microbiol. 54: 288–293, 1988.Google Scholar
  18. 18.
    Cheng, T.-c. “Unpublished data.”Google Scholar
  19. 19.
    Chettur, G., J. J. DeFrank, B. J. Gallo, F. C. G. Hoskin, S. Mainer, F. M. Robbins, K. E. Steinmann and J. E. Walker. “Soman-hydrolyzing and-detoxifying properties of an enzyme from a thermophilic bacterium.” Fund. Appl. Toxicol. 11: 373–380, 1988.CrossRefGoogle Scholar
  20. 20.
    Chiang, T., M. C. Dean and C. S. McDaniel. “A fruit fly bioassay with phosphotriesterase for detection of certain organophosphorus insecticide residues.” Bull. Environ. Contain. Toxicol. 34: 809–814, 1985.CrossRefGoogle Scholar
  21. 21.
    Cohen, J. A. and M. G. P. J. Warringa. “Purification and properties of dialkylfluoro-phosphatase.” Biochem. Biophys. Acta. 26: 29–39, 1957.PubMedCrossRefGoogle Scholar
  22. 22.
    Coppella, S. J., N. DelaCruz, G. F. Payne, B. M. Pogel, M. K. Speedie, J. S. Karns, E. M. Sybert and M. A. Connor. “Genetic engineering approach to toxic waste management: Case study for organophosphate waste treatment.” Biotechnol. Prog. 6: 76–81, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Daughton, C. G. and D. P. H. Hsieh. “Parathion utilization by bacterial symbionts in achemostat.” Appl. Environ. Microbiol. 34: 175–184, 1977.PubMedGoogle Scholar
  24. 24.
    DeFrank, J. J. “Unpublished data.”Google Scholar
  25. 25.
    DeFrank, J. J. and T.-c. Cheng. “Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterial isolate.” J. Bacteriol. 173: 1991.Google Scholar
  26. 26.
    Dumas, D. P., S. R. Caldwell, J. R. Wild and F. M. Raushel. “Purification and properties of the phosphotriesterase from Pseudomonas diminuta” J. Biol. Chem. 264: 19659–19665, 1989.PubMedGoogle Scholar
  27. 27.
    Dumas, D. P., H. D. Durst, W. G. Landis, F. M. Raushel and J. R. Wild. “Inactivation of organophosphorus nerve agents by the phosphotriesterase from Pseudomonas diminuta” Arch. Biochem. Biophys. 277: 155–159, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Gallo, B. J. Personal communication.Google Scholar
  29. 29.
    Garden, J. M., S. K. Hause, F. C. G. Hoskin and A. H. Roush. “Comparison of DFP-hydrolyzing enzyme purified from head ganglia and hepatopancreas of squid (Loligo pealei) by means of isoelectric focusing.” Comp. Biochem. Physiol. 52C: 95–98, 1975.Google Scholar
  30. 30.
    Gay, D. D. and F. C. G. Hoskin. “Stereospecificity and active site requirements in a diisopropylphosphorofluoridate-hydrolyzing enzyme.” Biochem. Pharmacol. 28: 1259–1261, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Harper, L. L., C. S. McDaniel, C. E. Miller and J. R. Wild. “Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contain identical opd genes.” Appl. Environ. Microbiol. 54: 2586–2589, 1988.PubMedGoogle Scholar
  32. 32.
    Hoskin, F. C. G. “The enzymatic hydrolysis products of sarin.” Can. J. Biochem. Physiol. 34: 75–79, 1956.PubMedCrossRefGoogle Scholar
  33. 33.
    Hoskin, F. C. G. “Possible significance of “DFPase” in squid nerve.” Biol. Bull. 137: 389–390, 1969.Google Scholar
  34. 34.
    Hoskin, F. C. G. “Diisopropylphosphorofluoridate and tabun: Enzymatic hydrolysis and nerve function.” Science. 172: 1243–1245, 1971.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoskin, F. C. G. “Distribution of diisopropylphosphorofluoridate-hydrolyzing enzyme between sheath and axoplasm of squid giant axon.” J. Neurochem. 26: 1043–1045, 1976.PubMedCrossRefGoogle Scholar
  36. 36.
    Hoskin, F. C. G. “An organophosphorus detoxifying enzyme unique to squid.” Squid as Experimental Animals. Gilbert and Adelman ed. in press Plenum. New York.Google Scholar
  37. 37.
    Hoskin, F. C. G., G. Chettur, S. Mainer, K. E. Steinmann, J. J. DeFrank, B. J. Gallo, F. M. Robbins and J. E. Walker. “Soman hydrolysis and detoxication by a thermo-philic bacterial enzyme.” Enzymes Hydrolysing Organophosphorus Compounds. Reiner, Aldridge and Hoskin ed. 1989 Ellis Horwood. England.Google Scholar
  38. 38.
    Hoskin, F. C. G., J. J. DeFrank, B. J. Gallo and J. E. Walker. Isomers of soman as research tools for the study of organophosphorus acid (OPA) anhydrases (formerly DFPases). Third International Symposium on Protection Against Chemical Warfare Agents. 187-194, 1989.Google Scholar
  39. 39.
    Hoskin, F. C. G., M. A. Kirkish and K. E. Steinmann. “Two enzymes for the detoxification of organophosphorus compounds-sources, similarities and significance.” Tox. Appl. Pharmacol. 4: S165–S172, 1984.Google Scholar
  40. 40.
    Hoskin, F. C. G. and R. J. Long. “Purification of a DFP-hydrolyzing enzyme from squid head ganglion.” Arch. Biochem. Biophys. 150: 548–555, 1972.PubMedCrossRefGoogle Scholar
  41. 41.
    Hoskin, F. C. G. and R. D. Prusch. “Characterization of a DFP-hydrolyzing enzyme in squid posterior salivary gland by use of soman, DFP and manganous ion.” Comp. Biochem. Physiol. 75C(1): 17–20, 1983.Google Scholar
  42. 42.
    Hoskin, F. C. G., K. S. Rajan and K. E. Steinmann. “Organophosphorus acid (OPA) anhydrase from squid: a calcium-dependent P-F splitting enzyme.” Biol. Bull. 175: 305–306, 1988.Google Scholar
  43. 43.
    Hoskin, F. C. G., P. Rosenbery and M. Brzin. “Re-examination of the effect of DFP on electrical and cholinesterase activity of squid giant axon.” Proc. Nat. Acad. Sci. USA. 55: 1231–1235, 1966.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoskin, F. C. G. and A. H. Roush. “Hydrolysis of nerve gas by squid type diisopropyl-phosphorofluoridate hydrolyzing enzyme on agarose resin.” Science. 215: 1255–1257, 1982.PubMedCrossRefGoogle Scholar
  45. 45.
    Hoskin, F. C. G. and G. S. Trick. “Stereospecificity in the enzymatic hydrolysis of tabun and acetyl-β-methylcholine chloride.” Can. J. Biochem. Physiol. 33: 963–969, 1955.PubMedCrossRefGoogle Scholar
  46. 46.
    Kaaijk, J. and C. Frijlink. “Degradation of S-2-diisopropylaminoethyl O-ethyl methylphosphonothiolate in soil. Sulphur-containing products.” Pestic. Sci. 8: 510–514, 1977.CrossRefGoogle Scholar
  47. 47.
    Landis, W. G. and J. J. DeFrank. Enzymatic hydrolysis of toxic organofluorophos-phate compounds. International Workshop on Biotechnology and Biodegradation. 4: 183–201, 1989.Google Scholar
  48. 48.
    Landis, W. G., D. M. Haley, M. V. Haley, D. W. Johnson, H. D. Durst and R E. Savage Jr. “Discovery of multiple organofluorophosphate hydrolyzing activities in the protozoan Tetrahymena thermophila.” J. Appl. Toxicol. 7(1): 35–41, 1987.PubMedCrossRefGoogle Scholar
  49. 49.
    Landis, W. G., M. V. Haley and D. W. Johnson. “Kinetics of the DFPase activity in Tetrahymena thermophila” J. Protozool. 33: 216–218, 1986.PubMedGoogle Scholar
  50. 50.
    Landis, W. G., R. E. Savage Jr. and F. C. G. Hoskin. “An organofluorophosphate-hydrolyzing activity in Tetrahymena thermophila.” J. Protozool. 32(3): 517–519, 1985.PubMedGoogle Scholar
  51. 51.
    Lewis, V. E., W. J. Donarski, J. R. Wild and F. M. Raushel. “Mechanism and stereo-chemical course at phosphorus of the reaction catalyzed by a bacterial phospho-triesterase.” Biochemistry. 27: 1591–1597, 1988.PubMedCrossRefGoogle Scholar
  52. 52.
    Little, J. S., C. A. Broomfield, L. J. Boucher and M. K. Fox-Talbot. “Partial characterization of a rat liver enzyme that hydrolyzes sarin, soman, tabun and DFP.” Fed. Proc. 45(4): 791, 1986.Google Scholar
  53. 53.
    Main, A. R. “The differentiation of the A-type esterases in sheep serum.” Biochem. J. 75: 188–195, 1960.PubMedGoogle Scholar
  54. 54.
    Main, A. R. “The purification of the enzyme hydrolyzing diethyl p-nitrophenyl phosphate (paraoxon) in sheep serum.” Biochem. J. 74: 10–20, 1960.PubMedGoogle Scholar
  55. 55.
    Mazur, A. “An enzyme in animal tissue capable of hydrolyzing the phosphorus-fluorine bond of alkyl fluorophosphates.” J. Biol. Chem. 164: 271–289, 1946.PubMedGoogle Scholar
  56. 56.
    McCombie, H. and B. C. Saunders. “Alkyl fluorophosphonates: Preparation and physiological properties.” Nature (London). 157: 287–289, 1946.CrossRefGoogle Scholar
  57. 57.
    McDaniel, C. S., L. L. Harper and J. R Wild. “Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase.” J. Bacteriol. 170: 2307–2311, 1988.Google Scholar
  58. 58.
    McEwen, F. L. and G. R. Stephenson. “The Use and Significance of Pesticides in the Environment.” 1979 Wiley-Interscience. New York.Google Scholar
  59. 59.
    Middlebrook, J. L. and R. B. Dorland. “Bacterial toxins: Cellular mechanisms of action.” Microbiol. Rev. 48: 199–221, 1984.PubMedGoogle Scholar
  60. 60.
    Mounter, L. A. “The complex nature of dialkylfluorophosphatases of hog and rat liver and kidney.” J. Biol. Chem. 215: 705–709, 1955.PubMedGoogle Scholar
  61. 61.
    Mounter, L. A. Metabolism of organophosphorus anticholinesterase agents. Hanbuch de Experimentellen Pharmakologie: Cholinesterases and Anticholinesterase Agents. 486-504, 1963.Google Scholar
  62. 62.
    Mounter, L. A., R. F. Baxter and A. Chanutin. “Dialkylfluorophosphatases of microorganisms.” J. Biol. Chem. 215: 699–704, 1955.PubMedGoogle Scholar
  63. 63.
    Mounter, L. A. and L. T. H. Dien. “Dialkylfluorophosphatase of kidney V. The hydrolysis of organophosphorus compounds.” J. Biol. Chem. 219: 685–690, 1956.PubMedGoogle Scholar
  64. 64.
    Mounter, L. A., L. T. H. Dien and A. Chanutin. “The distribution of dialkylfluorophosphatases in the tissues of various species.” J. Biol. Chem. 215: 691–697, 1955.PubMedGoogle Scholar
  65. 65.
    Mounter, L. A., C. S. Floyd and A. Chanutin. “Dialkylfluorophosphatase of kidney I. Purification and properties.” J. Biol. Chem. 204: 221–232, 1953.PubMedGoogle Scholar
  66. 66.
    Mounter, L. A. and K. D. Tuck. “Dialkylfluorophosphatase of microorganisms II. Substrate specificity studies.” J. Biol. Chem. 221: 537–541, 1956.PubMedGoogle Scholar
  67. 67.
    Mulbry, W. W. and J. S. Karns. “Purification and characterization of three para-thion hydrolases from Gram-negative bacterial strains.” Appl. Environ. Microbiol. 55: 289–293, 1989.PubMedGoogle Scholar
  68. 68.
    Mulbry, W. W., J. S. Karns, P. C. Kearney, J. D. Nelson, C. S. McDaniel and J. R. Wild. “Identification of a plasmid-borne parathion hydrolase gene from Flavobact-erium sp. by Southern hybridization with opd from Pseudomonas diminuta.” Appl. Environ. Microbiol. 51: 926–930, 1986.PubMedGoogle Scholar
  69. 69.
    Munnecke, D. M. “Enzymic hydrolysis of organophosphate insecticides, a possible pesticide disposal method.” Appl. Environ. Microbiol. 32: 7–13, 1976.PubMedGoogle Scholar
  70. 70.
    Munnecke, D.M. “Enzymatic detoxification of waste organophosphate pesticides.” Agric. Food Chem. 28: 105–111, 1980.CrossRefGoogle Scholar
  71. 71.
    Nelson, L. M. “Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria.” Soil Biol. Biochem. 14: 219–222, 1982.CrossRefGoogle Scholar
  72. 72.
    Pogell, B. M., S. S. Rowland, K. E. Steinmann, M. K. Speedie and F. C. G. Hoskin. “Genetic and biochemical evidence for the lack of significant hydrolysis of soman by a Flavobacterium parathion hydrolase.” Appl. Environ. Microbiol. 57:610–611, 1991.PubMedGoogle Scholar
  73. 73.
    Racke, K. D. and J. R. Coats. “Enhanced degradation of isofenphos by soil micro organisms.” J. Agric. Food Chem. 35: 94–99, 1987.CrossRefGoogle Scholar
  74. 74.
    Reiner, E., W. N. Aldridge and F. C. G. Hoskin. Enzymes Hydrolyzing Organophosphorus Compounds. 1989.Google Scholar
  75. 75.
    Rosenberg, A. and M. Alexander. “Microbial cleavage of organophosphorus insecticides.” Appl. Environ. Microbiol. 37: 886–891, 1979.PubMedGoogle Scholar
  76. 76.
    Rowland, S. S., M. S. Speedie and B. M. Pogell. “Purification and characterization of a secreted recombinant phosphotriesterase (parathion hydrolase) from Streptomyces lividans.” Appl. Environ. Microbiol. 57: 440–444, 1991.PubMedGoogle Scholar
  77. 77.
    Serdar, C. M. and D. T. Gibson. “Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta.” Bio/Technology. 3: 567–571, 1985.CrossRefGoogle Scholar
  78. 78.
    Serdar, C. M., D. T. Gibson, D. M. Munnecke and J. H. Lancaster. “Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta.” Appl. Environ. Microbiol. 44: 246–249, 1982.PubMedGoogle Scholar
  79. 79.
    Serdar, C. M., D. C. Murdock and M. F. Rohde. “Parathion hydrolase gene from Pseudomonas diminuta MG: Subcloning, complete nucleotide sequence, and expression of the mature portion of the enzyme in Escherichia coli.” Bio/ Technology. 7: 1151–1155, 1989.Google Scholar
  80. 80.
    Sethunathan, N. and T. Yoshida. Degradation of parathion in flooded acid soils. Institute of Environmental Science 18th Technical Meeting. 255-257, 1972.Google Scholar
  81. 81.
    Sethunathan, N. and T. Yoshida. “A Flavobacterium that degrades diazinon and parathion.” Can. J. Microbiol. 19: 873–875, 1973.PubMedCrossRefGoogle Scholar
  82. 82.
    Sheela, S. and S. B. Pai. “Metabolism of fensulfothion by a soil bacterium, Pseudomonas alcaligenes C1.” Appl. Environ. Microbiol. 46: 475–479, 1983.PubMedGoogle Scholar
  83. 83.
    Shelton, D. R. and C. J. Somich. “Isolation and characterization of coumaphos-metabolizing bacteria from cattle dip.” Appl. Environ. Microbiol. 54: 2566–2571, 1988.PubMedGoogle Scholar
  84. 84.
    Siddaramappa, R., K. P. Rajaram and N. Sethunathan. “Degradation of parathion by bacteria isolated from flooded soil.” Appl. Microbiol. 26: 846–849, 1973.PubMedGoogle Scholar
  85. 85.
    Steiert, J. G., B. M. Pogell, M. K. Speedie and J. Laredo. “A gene coding for a mem brane-bound hydrolase is expressed as a secreted, soluble enzyme in Streptomyces lividans.” Bio/Technology. 7: 65–68, 1989.CrossRefGoogle Scholar
  86. 86.
    Szafraniec, L. L. and W. T. Beaudry. Personal communication.Google Scholar
  87. 87.
    Talbot, H. W., L. Johnson, S. Barik and D. Williams. “Properties of a Pseudomonas sp.-derived parathion hydrolase immobilized to porous glass and activated alumina.” Biotechnol. Letters. 4: 209–214, 1982.CrossRefGoogle Scholar
  88. 88.
    Wild, J. R. Personal communication.Google Scholar
  89. 89.
    Zech, R. and K. D. Wigand. “Organophosphate-detoxicating enzymes in E. coli. Gel filtration and isoelectric focusing of DFPase, paraoxonase and unspecific phos-phohydrolases.” Experientia. 15: 157–158, 1975.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Joseph J. DeFrank
    • 1
  1. 1.Biotechnology DivisionU.S. Army Chemical Research, Development & Engineering CenterUSA

Personalised recommendations