Role of Membrane Phospholipids in Nonfreezing Cold Injury

  • Dipak K. Das
  • Swapna Maity
  • Dan Lu
Part of the Applications of Cryogenic Technology book series (APCT, volume 10)

Abstract

Nonfreezing cold injury (NFCI) represents a potential threat to infantry and marine operations carried out in inclement weather conditions.1,2 The term “NFCI” is used to identify the syndrome that results from damage to tissues that have been cooled, usually for prolonged periods, at temperatures between about 288°K (15°C) and their freezing point (272.5°K) (-0.5°C). NFCI reduces man’s mobility at the time, but through cold sensitization it may compromise his ability to fight under similar conditions in the future.

Keywords

Membrane Phospholipid Blister Fluid Cold Injury Hypothermic Perfusion Oleate Linoleate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Hanson and R. F. Goldman, Cold injury in man: a review of its etiology and discussion of its prediction, Milit. Med. 134: 1307 (1969).Google Scholar
  2. 2.
    N. G. Kirby and G. Blackburn, Cold injury, in: “Field Surgery Pocketbook,” Her Majesty’s Stationary Office, London (1981).Google Scholar
  3. 3.
    C. Bangs and M. P. Hamlet, Hypothermia and cold injuries, in: “Management of Wilderness and Environmental Emergencies,” P. S. Auerbach and E. C. Geehr, eds., MacMillan Publishing Co., New York (1983).Google Scholar
  4. 4.
    G. F. Purdue and J. L. Hunt, Cold injury: a collective review, J. Burn Care Rehabil. 7: 331 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Iyengar, A. George, J. Russell and D. K. Das, Generation of free radicals during cold injury and rewarming, Vase. Surg. 24: 467 (1990).CrossRefGoogle Scholar
  6. 6.
    D. K. Das and R. M. Engelman, Mechanism of free radical generation during reperfusion of ischemic myocardium, in: “Oxygen Radicals: Systemic Events and Disease Process,” D. K. Das and W. B. Esmann, eds., S. Karger, Basel (1989).Google Scholar
  7. 7.
    D. K. Das, R. M. Engelman, J. A. Rousou, R. H. Breyer, H. Otani and S. Lemeshow, Pathophysiology of superoxide radical as potential mediator of reperfusion injury in pig heart, Basic Res. Cardiol. 81: 155 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Otani, M. R. Prasad, R. M. Jones and D. K. Das, Mechanism of membrane phospholipid degradation in ischemic reperfused rat hearts, Am. J. Physiol. 257: H252 (1989).PubMedGoogle Scholar
  9. 9.
    D. J. Hearse, Reperfusion of the ischemic myocardium, J. Mol. Cell. Cardiol. 9: 605 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    R. B. Jennings and K. A. Reimer, Lethal myocardial ischemic injury, Am. J. Pathol. 102: 241 (1981).PubMedGoogle Scholar
  11. 11.
    K. R. Chien, A. Han, A. Sen, L. M. Buja and J. T. Willerson, Accumulation of unesterified arachidonic acid in ischemic canine myocardium, Circ. Res. 54: 313 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    D. K. Das, R. M. Engelman, J. A. Rousou, R. H. Breyer, H. Otani and S. Lemeshow, Role of membrane phospholipids in myocardial injury induced by ischemía and reperfusion, Am. J. Physiol. 251: H71 (1986).PubMedGoogle Scholar
  13. 13.
    J. Folch, M. Lees and G. H. Sloan-Stanley, A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226: 497 (1957).PubMedGoogle Scholar
  14. 14.
    A. M. Gilfillan, A. J. Chu, D. A. Smart and S. A. Rooney, Single plate separation of lung phospholipids including disaturated phosphatidylcholine, J. Lipid Res. 24: 1651 (1983).PubMedGoogle Scholar
  15. 15.
    G. R. Bartlett, Phosphorus assay in column chromatography, J. Biol. Chem. 234: 466 (1959).PubMedGoogle Scholar
  16. 16.
    R. Prasad, R. M. Jones, H. S. Young, L. B. Kaplinsky and D. K. Das, Analysis of tissue free fatty acid isolated by aminopropyl bond-phase columns, J. Chromatogr. 428: 221 (1988).PubMedGoogle Scholar
  17. 17.
    D. K. Das, R. M. Engelman, D. Flansaas, H. Otani, J. Rousou and R. H. Breyer, Development profiles of protective mechanisms of heart against peroxidative injury, Basic Res. Cardiol. 82: 36 (1987).PubMedCrossRefGoogle Scholar
  18. 18.
    D. K. Das, D. Flansaas, R. M. Engelman, J. A. Rousou, R. H. Breyer, R. Jones, S. Lemeshow and H. Otani, Age-related development profiles of the antioxidative defense system and the peroxidative status of the pig heart, Biol. Neonate 51: 156 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    B. Albrektsson and P. I. Branemark, Early microvascular reactions to slow and rapid thawing of frozen tissue, Adv. Microcirc. 2: 37 (1969).Google Scholar
  20. 20.
    D. Kettelkamp, M. Walker and P. Ramsey, Radioactive albumin, red blood cells and sodium as indicators of tissue damage after frostbite, Cryobiology 8: 79 (1971).PubMedCrossRefGoogle Scholar
  21. 21.
    J. P. Kulka, Cold injury of the skin: the pathogenic role of microcirculatory impairment, Arch. Environ. Health 11: 484 (1965).PubMedCrossRefGoogle Scholar
  22. 22.
    M. R. Prasad and D. K. Das, Effect of oxygen derived free radicals and oxidants on the degradation in vitro of membrane phospholipids, Free Radic. Res. Commun. 7: 381 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    H. Otani, R. Prasad, R. M. Jones and D. K. Das, Mechanism of membrane phospholipid degradation in ischemic reperfused rat heart, Am. J. Physiol. 257: H252 (1989).PubMedGoogle Scholar
  24. 24.
    G. S. Pavlock, J. H. Southard, J. R. Starling and F. 0. Belzer, Lysosomal enzyme release in hypothermically perfused dog kidneys, Cryobiology 21: 521 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    J. H. Southard, M. S. Ametani, M. F. Lutz and F. 0. Belzer, Effects of hypothermic perfusion of kidneys on tissue and mitochondrial phospholipids, Cryobiology 21: 20 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    D. K. Das, J. C. Russell and R. M. Jones, Reduction of cold injury by superoxide dismutase and catalase, Free Radic. Res. Commun. (in press).Google Scholar
  27. 27.
    J. Iyengar, A. George, J. C. Russell and D. K. Das, The effects of an iron chelator on vascular stasis-induced cellular injury evoked by hypothermia, J. Vasc. Surg. (in press).Google Scholar
  28. 28.
    D. K. Das, J. Iyengar, R. M. Jones, D. Lu, S. Maity, Protection from nonfreezing cold injury by quinacrine, a phospholipase inhibitor, Cryobiology (in press).Google Scholar
  29. 29.
    H. Kunze, B. Hesse and E. Bohn, Effects of antimalarial drugs on several rat liver lysosomal enzymes involved in phosphatidylethanolamine catabolism, Biochim. Biophys. Acta 713: 112 (1982).PubMedCrossRefGoogle Scholar
  30. 30.
    P. B. Corr, R. W. Gross and B. E. Sobel, Amphipathic metabolites and membrane dysfunction in ischemic myocardium, Circ. Res. 55: 135 (1984).PubMedCrossRefGoogle Scholar
  31. 31.
    A. M. Katz and F. C. Messineo, Lipid membrane interactions and the pathogenesis of ischemic damage in the myocardium, Circ. Res. 48: 1 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    A. I. Tauber and E. R. Simons, Dissociation of human neutro-phil membrane depolarization respiratory burst stimulation, and phospholipid metabolism by quinacrine, FEBS Lett. 156: 161 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    T. J. Raine, M. D. London, L. Goluch, J. P. Heggers and M. C. Robson, Antiprostaglandins and antithromboxanes for treatment of frostbite, Sure. Forum 31: 557–559 (1980).Google Scholar
  34. 34.
    M. C. Robson and J. P. Heggers, Evaluation of hand frostbite blister fluid as a clue to pathogenesis. J. Hand Surg. 6: 43–47 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Dipak K. Das
    • 1
  • Swapna Maity
    • 1
  • Dan Lu
    • 1
  1. 1.Surgical Research Center, Department of Surgery Cardiovascular DivisionUniversity of Connecticut School of MedicineFarmingtonUSA

Personalised recommendations