Cryogenic Heat Transfer a Survey of Recent Developments

  • John C. Chato
Part of the Applications of Cryogenic Technology book series (APCT, volume 10)

Abstract

Although heat transfer in general and cryogenic heat transfer in particular are mature fields with decades of history behind them, new developments and new applications require a fresh look and new understanding of the various phenomena influencing the transfer of thermal energy. This review is intended to highlight these new areas as reflected in the most recent technical literature. The emphasis will be on new basic concepts rather than applications of existing techniques to new equipment.

Keywords

Heat Transfer Heat Flux Nusselt Number Critical Heat Flux Superfluid Helium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asami, T., 1988, New method to determine the BWR coefficients in saturated regions, Cryogenics, 28: 521–526.CrossRefGoogle Scholar
  2. Asami, T. and Ebisu, H., 1989, Thermodynamic properties of nitrogen calculated from the BWR equation of state, Cryogenics, 29: 995–997.CrossRefGoogle Scholar
  3. Barron, R. F. and Dergham, A. R., 1988, Film boiling to a plate facing downward; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 355–362.CrossRefGoogle Scholar
  4. Barth, W., W. Lehmann, Henry, C., and Walther, R., 1988, Test results for a high quality industrial superinsulation, Cryogenics, 28: 607–609.CrossRefGoogle Scholar
  5. Beduz, C., Scurlock, R. G., and Sousa, A. J., 1988, Angular dependence of boiling heat transfer mechanisms in liquid nitrogen; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 363–370.CrossRefGoogle Scholar
  6. Benda, V., 1989, Thermal resistance between 3He-4He mixture and sintered silver, Cryogenics, 29: 457–459.CrossRefGoogle Scholar
  7. Bhowmick, T. and Pattanayak, S., 1989, Experimental setup for the study of thermal conductivity of elastomeric material at cryogenic temperature, Cryogenics, 29: 463–466.CrossRefGoogle Scholar
  8. Bodegom, E., Nissen, J. A., Brodie, L. C., and Semura, J. S., 1988, Sound induced enhancement of heat transfer from a solid into liquid helium; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 349–354.CrossRefGoogle Scholar
  9. Borchi, E., Zoli, M., Frigo, A. and Lombardini, L., 1989, Axial conductivity and heat exchanges in a hybridized Gifford-McMahon cryocooler, Cryogenics, 29: 196–199.CrossRefGoogle Scholar
  10. Bosch, W. A., Willekers, R. W., Meijer, H. C., and Postma, H., 1989, Heat conductivity below 0.4 K of the glass-ceramic Macor and of Staybrite stainless steel, Cryogenics, 29: 982–984.CrossRefGoogle Scholar
  11. Breen, B. P. and Westwater, J. W., 1962, Effect of diameter of horizontal tubes on film boiling heat transfer, Chem. Eng. Prog., 58, No. 7: 67–72.Google Scholar
  12. Breon, S. R. and Van Sciver, S. W., 1986, Boiling in saturated He II; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 465472.Google Scholar
  13. Brizzi, R., Fouaidy, M., and Junquera, T., 1990Google Scholar
  14. Thermometry of niobium surfaces in superfluid helium: a powerful diagnostic technique for superconducting RF cavities, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York, 15–22.Google Scholar
  15. Bunkov, Y. M., 1989, Superconducting aluminium heat switch prepared by diffusion welding, Cryogenics, 29: 938–939.CrossRefGoogle Scholar
  16. Canavan, E. R. and Van Sciver, S. W., 1988, Evolution of normal zones and temperature in a superconductor cooled internally with helium-II; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 195–202.CrossRefGoogle Scholar
  17. Chandratilleke, G. R., Nishio, S., and Ohkubo, H., 1989, Pool boiling heat transfer to saturated liquid helium from coated surface, Cryogenics, 29: 588–592.CrossRefGoogle Scholar
  18. Chato, J. C., 1989, Second law limitations imposed by heat exchangers on the performance of thermodynamic cycles, in “Collected papers in heat transfer,” M. B. Pate, ed., ASME, New York, HTD-Vol. 123: 201–210.Google Scholar
  19. Chen, Z. and Van Sciver, S. W., 1986, Channel heat transfer in He I–steady state orientation dependence; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 431–438.CrossRefGoogle Scholar
  20. Danilchenko, B. A., Lutset, M. O., and Poroshin, V. N., 1989, Limit of transient heat absorption by superfluid helium for very large heat pulses, Cryogenics, 29: 444–447.CrossRefGoogle Scholar
  21. DiPirro, M. J.,Boyle, R. F., Figueroa, O., Lindauer, D., McHugh, D. C., and Shirron, P. J., The SHOOT cryogenic system, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York, 29–36.Google Scholar
  22. Dresner, L., 1989a, Bubble growth in superheated He II, Cryogenics, 29: 509–512.CrossRefGoogle Scholar
  23. Dresner, L., 1989b, Stability margins of superconductors cooled with subcooled He II, Cryogenics, 29:668–673.tGoogle Scholar
  24. Dress, D. A. and Kilgore, R. A., 1988, Cryogenic wind tunnel research: a global perspective, Cryogenics, 28: 10–21.CrossRefGoogle Scholar
  25. Eckels, P. W., 1989, Superconductor stability and helium heat transfer: the minimum propagating zone relationship in design, Cryogenics, 29: 625–629.CrossRefGoogle Scholar
  26. Eckels, P. W. and Smith Jr., J. L., 1989, Superconductor stability in the power system environment, Cryogenics, 29: 651–654.CrossRefGoogle Scholar
  27. Elsner, A., 1989, Temperature dependence of energy and entropy of fluid systems, Cryogenics, 29: 1075–1083.CrossRefGoogle Scholar
  28. Fonteyn, D. and Pitsi, G., 1989, Sensitive method for determining thermal conductivity of pure metals at low temperatures, Cryogenics, 29: 51–54.CrossRefGoogle Scholar
  29. Frederking, T. H. K., 1989, Characteristic parameters of superconductor-coolant interaction including high Tc current density limits, Cryogenics, 29: 610–615.CrossRefGoogle Scholar
  30. Frederking, T. H. K., Afifi, F. A., and Ono, D. Y., 1989, Critical transport parameters for porous media subjected to counterflow, Cryogenics, 29: 498–502.CrossRefGoogle Scholar
  31. Fuchino, S., Tamada, N., Sekine, T., Shinada, K., and Tomiyama, S., 1986, Dynamical behaviour of He II circulation loop under heat load; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 481–487.CrossRefGoogle Scholar
  32. Fuchino, S. and Tamada, N., 1989, Characteristics of forced flow superfluid helium circulation system, Cryogenics, 29: 432–437.CrossRefGoogle Scholar
  33. Gillespie, D. J. and Ehrlich, A. C., 1989, Fitting and interpolating calibration data for carbon-glass thermometers, Cryogenics, 29: 1092–1095.CrossRefGoogle Scholar
  34. Gradt, T., Szucs, Z., Denner, H.-D., and Klipping, G., 1986, Heat transfer from thin wires to superfluid helium under reduced gavity; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 499–504.CrossRefGoogle Scholar
  35. Greig, D., 1988, Low temperature thermal conductivity of polymers, Cryogenics, 28: 243–247.CrossRefGoogle Scholar
  36. Hartwig, G., 1988, Thermal expansion of fibreGoogle Scholar
  37. composites, Cryogenics, 28:255–266.Google Scholar
  38. Hassenzahl, W. V., 1989, Study of the effects of copper to superconductor ratio on stability, Cryogenics, 29: 637–641.CrossRefGoogle Scholar
  39. Hilal, M. A., Peck, S. D., and Ibrahim, E. A., 1988, Helium pressure rise of superconducting super collider dipole magnets following a quench; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 143–148.CrossRefGoogle Scholar
  40. Igra, R., Scurlock, R. G., and Wu, Y. Y., 1986, Reverse convection in helium and other fluids in the high speed rotating frame: negative and positive buoyancy effects; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 447–454.CrossRefGoogle Scholar
  41. Lida, F., Tada, N., and Ogata, H., 1989, Stability of 10T-(Nb-Ti)3Sn forced flow cooled superconducting coil, Cryogenics, 29:642–647.tGoogle Scholar
  42. Ito, T. and Kubota, H., 1989, Maddock criterion and minimum propagating zone, Cryogenics, 29: 621–624.CrossRefGoogle Scholar
  43. Iye, Y., 1988, Small low-cost platinum resistance thermometers for thermometry in magnetic fields, Cryogenics, 28: 164–168.CrossRefGoogle Scholar
  44. Kasao, D. and Ito, T., 1989, Review of existingGoogle Scholar
  45. experimental findings on forced convection heat transfer to supercritical helium 4, Cryogenics, 29:630–636.Google Scholar
  46. Kashani, A., 1990, Entropy generation in He II forced convection, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York, 37–43.Google Scholar
  47. Kashani, A. and Van Sciver, S. W., 1986, Steady state forced convection heat transfer in He II; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 489–498.Google Scholar
  48. Kerns, J. A., Slack, D. S., and Miller, J. R., 1988, Thermal analysis of the forced cooled conductor for the TF (Toroidal Field) superconducting coils in the TIBER (Tokamak Ignition/Burn Experimental Reactor) II ETR design; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 175–182.CrossRefGoogle Scholar
  49. Kiselev, Yu. F., Chernikov, A. N., Gorodishenin, N. L., Evdokimov, V. A., and Katushonok, S. S., 1989, Autocompensating device for ultra-low temperature measurements, Cryogenics, 29: 55–58.Google Scholar
  50. Klimenko, V. V., Tyodorov, M. V., and Fomichyov, Yu. A., 1989, Channel orientation and geometry influence on heat transfer with two-phase forced flow of nitrogen, Cryogenics, 29: 31–36.CrossRefGoogle Scholar
  51. Kobayashi, H., Tada, I., Kodama, T., Tanaka, M., and Turuga, H., 1989, Stabilization enhancement for superconducting magnets by means of hydrostatically pressurized He II, Cryogenics, 29: 674–678.CrossRefGoogle Scholar
  52. Kuroda, K., Uchikawa, S., Hara, N., Saito, R., Takeda, R., Murai, K., Kobayashi, T., Suzuki, S., and Nakayama, T., 1989, Quench simulation analysis of a superconducting coil, Cryogenics, 29: 814–824.CrossRefGoogle Scholar
  53. Kush, P. K. and Thirumaleshwar, M., 1989, Design of regenerators for a Gifford-McMahon cycle cryorefrigerator, Cryogenics, 29: 1084–1091.CrossRefGoogle Scholar
  54. Lee, J. H., Ng, Y. S., and Brooks, W. F., Analytical study of He II flow charateristics in the SHOOT transfer line, Cryogenics, 28: 81–85.Google Scholar
  55. Leyarovski, E. I., Leyarovska, L. N. Popov, Chr., and Popov, O., 1988, High field magnetocalorimetry below 1 K: specific heat of copper at 14 T, Cryogenics, 28: 321–335.Google Scholar
  56. Lezak, D., Brodie, L. C., Semura, J. S., and Roberts, S. M., Temperature dependence of the time delay to the onset of film boiling in liquid helium; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 439–446.Google Scholar
  57. Lin, L-h, Hu, L-f, Chen, S-x, Liu, C-y, Sun, Z-f, and Chen, H., 1986, Enhancement of condensation heat transfer inside V-type corrugated vertical tubes; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 423–430.CrossRefGoogle Scholar
  58. Lutset, M. O. and Zhukov, V. E., 1989, Heat transfer in a rotating cryostat at high centrifugal acceleration fields, Cryogenics, 29: 37–41.CrossRefGoogle Scholar
  59. Matsumoto, K. and Shiino, M., 1989, Thermal regenerator analysis: analytical solution for effectiveness and entropy production in regenerative process, Cryogenics, 29: 888–894.CrossRefGoogle Scholar
  60. Maza, J., Jebali, F., Francois, M. X., and Vidal, F., 1989, Temperature and heat flux measurement in noiseless film boiling in superfluid helium, Cryogenics, 29: 200–202.CrossRefGoogle Scholar
  61. Mirza, S., 1990, The behavior of boiling of liquid nitrogen from aluminum surfaces, Int. Comm. Heat Mass Transfer, 17: 9–18.CrossRefGoogle Scholar
  62. Mori, H. and Ogata, H., 1989, Effect of counterflow on heat transfer to He II in a channel, Cryogenics, 29:664–667.tGoogle Scholar
  63. Muller-Steinhage, H. M., 1988, Fouling phenomena during boiling of cryogenic liquids, Cryogenics, 28: 406–408.CrossRefGoogle Scholar
  64. Narahara, Y., Tominaga, A., Mizutani, F., and Yazaki, T., 1988, Thermal effects due to oscillations of gas columns, Cryogenics, 28: 177–180.CrossRefGoogle Scholar
  65. Nemirovskii, S. K. and Tsoi, A. N., 1989, Transient thermal and hydrodynamic processes in superfluid helium, Cryogenics, 29: 985–994.CrossRefGoogle Scholar
  66. Nishijima, S., Yamashita, T., Takahata, K., Okada, T., Fukutsuka, T., Matsumoto, K. and Hamada, M., 1988a, Effect of epoxy cracking on stability of impregnated windings related to thermal and mechanical properties; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 125–133.CrossRefGoogle Scholar
  67. Nishijima, S., Takahata, K., and Okada, T., 1988b, Local temperature rise after quench due to epoxy cracking in impregnated superconducting windings; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 135–142.CrossRefGoogle Scholar
  68. Noto, K., Watanabe, K., Morita, H., Mori, K., Sasakawa, M., Isikawa, Y., Sato, K., Ishihara, T., Inukai, E., Fujimori, H., and Muto, Y., 1989, Thermal conductivity and critical current density in high Tc Y1-x Lnx Ba2 Cu3 O7, Cryogenics, 29: 648–650.CrossRefGoogle Scholar
  69. Ogasawara, T., 1989, Stability of composite tape superconductors against transient thermal disturbances, Cryogenics, 29: 825–829.CrossRefGoogle Scholar
  70. Ohuchi, N., Makida, Y., Yamamoto, J., and Murakami, Y., 1988, AC loss and stability of a force-cooled superconducting coil with a bias pulsed superconducting magnet; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 159–166.CrossRefGoogle Scholar
  71. Okamura, T., Yoshizawa, Y., Sato, A., Ishito, K., Kabashima, S., and Shioda, S., 1989, Time dependent heat transfer in pressurized superfluid helium, Cryogenics, 29: 1070–1074.CrossRefGoogle Scholar
  72. Onishi, T., Tateishi, H., and Nomura, H., 1989, Dynamic behaviour of pulsed magnets, Cryogenics, 29: 659–663.CrossRefGoogle Scholar
  73. Oonk, R. L. and Hustvedt, D. C., 1986, The effect of fluid property variations on the performance of cryogenic helium heat exchangers; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 415–422.CrossRefGoogle Scholar
  74. Phelan, P. E., Iwasa, Y., Takahashi, Y., Tsuji, H., Nishi, M., Tada, E., Yoshida, K., and Shimamoto, S., 1989, Transient stability of a Nb-Ti cable-inconduit superconductor: experimental results, Cryogenics, 29: 109–118.CrossRefGoogle Scholar
  75. Richardson, R. N., 1986, Pulse tube refrigerator–an alternative cryocooler?, Cryogenics, 26: 331–340.CrossRefGoogle Scholar
  76. Richardson, R. N., 1988, Development of a practical pulse tube refrigerator: co-axial designs and the influence of viscosity, Cryogenics, 28: 516–520.CrossRefGoogle Scholar
  77. Rohsenow, W. M., 1952, A method of correlating heat transfer data for surface boiling of liquids, Trans. ASME, 74: 969.Google Scholar
  78. Romanovskii, V. R., 1988, Stability of superconducting composites under thermal disturbances with change in the external magnetic field and the critical temperature of the superconductor, Cryogenics, 28: 756–761.CrossRefGoogle Scholar
  79. Sakurai, A., Shiotsu, M., Hata, K., and Takeuchi, Y., 1989, Quasi-steady nucleate boiling and its life caused by large stepwise heat input in saturated pool liquid helium I, Cryogenics, 29: 597–601.CrossRefGoogle Scholar
  80. Sato, A., Ishito, K., Kabashima, S., Nakamura, S., and Suzuki, E., 1989, Stability of superconducting magnet indirectly cooled by He II, Cryogenics, 29: 655–658.CrossRefGoogle Scholar
  81. Schmidt, C., 1988, Transient heat transfer into a closed small volume of liquid or supercritical helium, Cryogenics, 28: 585–598.CrossRefGoogle Scholar
  82. Schoepe, W., Uhlig, K., and Neumaier, K., 1989, Carbon and germanium resistors in the variable-range hopping regime for thermometry below K, Cryoaenics, 29: 467–468.CrossRefGoogle Scholar
  83. Schwarz, G., 1988, Thermal expansion of polymers from 4.2 K to room temperature, Cryogenics, 28: 248–254.CrossRefGoogle Scholar
  84. Schwerdtner, M. v., Poppe, W., and Schmidt, D. W., 1989, Distortion of temperature signals in He II due to probe geometry, and a new improved probe, Cryogenics, 29: 132–134.CrossRefGoogle Scholar
  85. Sekiya, S. and Ichikawa, A., 1989, Numerical analysis of quench transients in forced-flow cooled superconductors, Cryogenics, 29: 25–30.CrossRefGoogle Scholar
  86. Shiotsu, M., Hata, K., and Sakurai, A., 1989, Effects of diameter and system pressure on critical heat flux for horizontal cylinders in saturated liquid He I, Cryogenics, 29: 593–596.CrossRefGoogle Scholar
  87. Shiotsu, M., Hata, K., and Sakurai, A., 1990, Transient heat transfer from a horizontal wire in superfluid helium caused by exponential and step heat inputs, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York, 9–14.Google Scholar
  88. Shu, Q. S., Fast, R. W., and Hart, H. L., 1986, An experimental study of heat transfer in multilayer insulation; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 455–463.CrossRefGoogle Scholar
  89. Steur, P. P. M. and Pavese, F., 1989, He-3 constant volume gas thermometer as interpolating instrument: calculations of the accuracy limit versus temperature range and design parameters, Cryogenics, 29: 135–138.CrossRefGoogle Scholar
  90. Svoboda, P., 1989, Simple device for measurement of transport properties of new high temperature superconductors, Cryogenics, 29: 210–211.CrossRefGoogle Scholar
  91. Tada, E., Takahashi, Y., Tsuji, H., Okuno, K., Ando, T., Hiyama, T., Koizumi, K., Nishi, M., Nakajima, H., Yoshida, K., Kato, T., Kawano, K., Oshikiri, M., Yamaguchi, M., and Shimamoto, S., 1989, Downstream effect on stability in cable-in-conduit superconductor, Cryogenics, 29: 830–840.CrossRefGoogle Scholar
  92. Tanaka, M. and Kodama, T., 1989, Pool boiling heat transfer in 3He, Cryogenics, 29: 203–205.CrossRefGoogle Scholar
  93. Tarnawski, Z., van der Meulen, H. P., Franse, J. J. M., Kadowaki, K., Veenhuizen, P. A., and Klaasse, J. C. P., 1988, New possibility of magnetic ripple shielding for specific heat measurements in hybrid magnets, Cryogenics, 28: 614–616.CrossRefGoogle Scholar
  94. Tien, C. L., Flik, M. I., and Phelan, P. E., 1989, Mechanisms of local thermal stability in high temperature superconductors, Cryogenics, 29: 602–609.CrossRefGoogle Scholar
  95. Tsatis, D. E., 1988, Thermal diffusivity of Araldite, Crvogenics, 28: 609–610.CrossRefGoogle Scholar
  96. Tsukamoto, O., Takao, T., and Honjo, S., 1989, Stability analysis of superconducting magnet: an approach to quantification of energy disturbance caused by conductor motion, Cryogenics, 29: 616–620.CrossRefGoogle Scholar
  97. van der Linden, R. J. and Hoogendoorn, C. J., 1989, Transient cooling of an internally cooled superconducting magnet, Cryogenics, 29: 179–187.CrossRefGoogle Scholar
  98. Van Sciver, S. W., 1989, Forced flow He II in relation to stability of internally cooled superconductors, Cryogenics, 29:679–682.tGoogle Scholar
  99. Vishnev, I. P., 1988, Molecular and thermodynamic method of heat transfer generalization and classification of boiling substances, Cryogenics, 28: 770–778.CrossRefGoogle Scholar
  100. Volkov, A. F., Dinaburg, L. B., Kalinin, V. V., Konstantinov, A. B., and Khrushev, V. N., 1988, Simulation of nonstationary thermal regimes in cryogenic loops for tokamak-15 electromagnets; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 183–186.CrossRefGoogle Scholar
  101. Volz, S. M. and Ryschkewitsch, M. G., Ground and early on-orbit performance of the superfluid helium dewar of the Cosmic Background Explorer (COBE), 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York, 23–27.Google Scholar
  102. Walstrom, P. L., 1988, Joule-Thompson effect and internal convection heat transfer in turbulent He II flow, Cryogenics, 28: 151–156.CrossRefGoogle Scholar
  103. Waynert, J., Eyssa, Y., and Huang, X., 1988, The transient stability of large scale superconductors cooled in superfluid helium; in: “Adv. in Cryogenic Eng.,” Vol. 33, R. W. Fast, Ed., Plenum Press, N.Y., pp. 187–194.CrossRefGoogle Scholar
  104. Weisend II, J. G. and Van Sciver, S. W., 1990, Surface heat transfer measurements in forced flow He II, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York,1–7.Google Scholar
  105. Xiao, J. H. and Guo, F. Z., 1988, Analytical network model on the flow and thermal characteristics of cyclic flow cryogenic regenerators, Cryogenics, 28: 762–769.CrossRefGoogle Scholar
  106. Xiulin, Y., Hongji, X., Yuweng, Z., and Hongzhang, Q., 1989, Pool boiling heat transfer to liquid nitrogen from porous metallic coatings of tube bundles andGoogle Scholar
  107. experimental research of hysteresis phenomenon, Cryogenics, 29:460–462.Google Scholar
  108. Yamamoto, J., Yamamuro, K., Ohuchi, N., and Murakami, Y., 1986, Analysis of flow instability of supercritical helium in curved tubing; in: “Adv. in Cryogenic Eng.,” Vol. 31, R. W. Fast, Ed., Plenum Press, N.Y., pp. 473–480.CrossRefGoogle Scholar
  109. Yuan, S. W. K., Frederking, T. H. K., and Chuang, T. C., 1990, Thermal contact domain resistance: overall solid helium 4 Kapitza resistance, 5th AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18–20; in: “Superfluid helium heat transfer,” J. P. Kelley and W. J. Schneider, eds., ASME HTD-Vol. 134, New York,45.Google Scholar
  110. Zimm, C. B., Barclay, J. A., Harkness, H. H., Green, G. F., and Patton, W. G., 1989, Magnetocaloric effect in thulium, Cryogenics, 29: 937–938.CrossRefGoogle Scholar
  111. Zych, D. A., 1989, Thermal conductivity of a machinable glass-ceramic below 1 K, Cryogenics, 29: 758–759.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • John C. Chato
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations