The Uses of Thermogravimetric Analysis and Infrared Spectroscopy for Characterizing Supported Catalysts

  • Mark G. White


Infrared spectroscopy (IR) has been used to establish the structure of molecules which show vibrational spectra. In some cases, IR can be used as an analytical tool to measure concentrations of species in fluid solutions; however, the technique is qualitative when applied to solids due to the scattering of the light caused by particles of dimensions similar to the wavelength of the radiation. Since most heterogeneous catalysts are finely divided solids, light scattering limits the usefulness of transmission IR as a quantitative technique. Transmission IR has been used to determine the vibrational state(s) of probe molecules chemisorbed to catalytic sites. These vibrational state(s) are related to the structure of the site to infer the relationship between structure and properties.


Temperature Program Desorption Probe Molecule Lewis Acid Site Site Density Fractional Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Infrared Spectroscopy (Nakamoto, K., “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, 3rd Ed., J. Wiley and Sons (1978)Google Scholar
  2. 2.
    Pavia, D. L., G. L. Lampman, and G. S. Driz, Jr., “Introduction to Spectroscopy”, W. B. Sanders, and Co. (1979)Google Scholar
  3. 3.
    Szymanski, H. A., “IR, Theory and Practice of Infrared Spectroscopy”, Plenum Press, New York (1964); Yates, John, T., Jr., and T. E. Madey, “Vibrational Spectroscopy of Molecules on Surfaces”, Methods of Surface Characterization, Vol. 1, Plenum Press, New York (1987).Google Scholar
  4. 4.
    Eischens, R. P., Advances in Catalysis, 10, 2 (1958).CrossRefGoogle Scholar
  5. 5.
    Leftin, H. P., and M. C. Hobson, Jr., Advances in Catalysis, 14, (1964).Google Scholar
  6. 6.
    Thompson, M. M., and R. A. Palmer, Appl. Spectroscopy 42, 945 (1988).CrossRefGoogle Scholar
  7. 7.
    Wendlandt, W. W., and H. G. Hecht, “Reflectance Spectroscopy”, Interscience Publishers, New York (1966).Google Scholar
  8. 8.
    Leyden, D. E., and R. S. Shreedhara Murthy, Spectroscopy, 2, 28 (1988).Google Scholar
  9. 9.
    Hamadeh, I. M., D. King, and P. R. Griffiths, J. Catal. 88, 264 (1988).CrossRefGoogle Scholar
  10. 10.
    Fuller, M. P., and P. R. Griffiths, Appl. Spectroscopy, 34, 533 (1980).CrossRefGoogle Scholar
  11. 11.
    Rhodin, T. N., Jr, “Surface Studies with the Vacuum Microbalance: Instumentation and Low-Temperature Applications”, Advances in Catalysis, Vol. 5, p. 39 (1953).Google Scholar
  12. 12.
    Gulbransen, E. A., “Surface Studies with the Vacuum Microbalance: High Temperature Applications”, Advances in Catalysis, Vol. 5, p. 120 (1953).CrossRefGoogle Scholar
  13. 13.
    Cvetanovic, R. J., and Y. Amenomiya, Advances in Catalysis, vol. 17, p. 103 (1967).CrossRefGoogle Scholar
  14. 14.
    Smuteck, M., S. Cerny, and F. Buzek, “Analysis of Thermal Desorption Data for Adsorption Studies”, Advances in Catalysis, vol. 24, p. 343 (1975).CrossRefGoogle Scholar
  15. 15.
    White, Mark. G., “Heterogeneous Catalysis”, Prentice-Hall, Inc., New York (1990).Google Scholar
  16. 16.
    Huo, H. M., J. Chem. Phys. 43, 624 (1965).CrossRefGoogle Scholar
  17. 17.
    Blyholder, G, and M. C. Allen, J. Am. Chem. Soc. 91:12, 3158 (1969).CrossRefGoogle Scholar
  18. 18.
    Blyholder, G., J. Phys. Chem. 68, 2772 (1964).CrossRefGoogle Scholar
  19. 19.
    Lokhov, Yu. A., and A. A. Davydov, Kinet. Katal. 20, 1498 (1979).Google Scholar
  20. 20.
    Rebenstorf, B., and R. Larsson, Z., Anorg. Allg. Chem. 453, 127 (1979).CrossRefGoogle Scholar
  21. 21.
    Harrison, P. G., and E. G. White, J. Chem. Soc. Faraday Trans. 1 74, 2703 (1978).CrossRefGoogle Scholar
  22. 22.
    Eischens, R. P., S. A. Francis, and W. A. Pliskin, J. Phys. Chem. 60, 194 (1956).CrossRefGoogle Scholar
  23. 23.
    Eischens, R. P., Z Elektrochem. 60, 782 (1956).Google Scholar
  24. 24.
    Lokhov, Yu. A., Z. Musil, and A. A. Davydov, Kinet. Katal. 20, 207 (1979).Google Scholar
  25. 25.
    Babb, K. H., and M. G. White, J. Catal. 98, 343 (1986).CrossRefGoogle Scholar
  26. 26.
    Beckler, R. K., and M. G. White, J. Catal. 112, 157 (1988).CrossRefGoogle Scholar
  27. 27.
    Kung, H. H., and M. Kung, CataL Rev. Scie. Eng. 27 (3), 425 (1985).CrossRefGoogle Scholar
  28. 28.
    Knozinger, H., Adv. Catal. 25, 184 (1976)).CrossRefGoogle Scholar
  29. 29.
    Parry, E. P., J. Catal. 2, 371 (1963).CrossRefGoogle Scholar
  30. 30.
    Rosenthal, D. J., M. G. White, and G. D. Parks, AIChE Journal 33, No. 2, 336 (1987).CrossRefGoogle Scholar
  31. 31.
    Hughes, T. R., and H. M. White, J. Phys. Chem. 71(7), 2192 (1967).CrossRefGoogle Scholar
  32. 32.
    Brinen, J. L., and M. G. White, J. Catal. 124, 133 (1990).CrossRefGoogle Scholar
  33. 33.
    Little, L. H. “Infrared Spectra of Adsorbed Species”, Academic Press, Inc., New York, (1966).Google Scholar
  34. 34.
    Basila, M. R., and T. R. Kantner, J. Phys. Chem. 71, 467 (1967).CrossRefGoogle Scholar
  35. 35.
    Tsyganeko, A. A., D. V. Pozdnyakov, and V. N. Filimonov, J. Mol Struc. 29, 299 (1975).CrossRefGoogle Scholar
  36. 36.
    Mapes, J. E., and R. P. Eischens, J. Phys. Chem. 58, 1059 (1954).CrossRefGoogle Scholar
  37. 37.
    Beckler, R. K., and M. G. White, Langmuir 3, 1074 (1987).CrossRefGoogle Scholar
  38. 38.
    Beckler, R. K., and M. G. White, J. Catal 109, 25 (1988).CrossRefGoogle Scholar
  39. 39.
    Fately, W. G., H. A. Bent, and B. Crawford, Jr., J. Chem. Phys. 32, 204 (1959).CrossRefGoogle Scholar
  40. 40.
    Zecchina, A., E. Garrone, C. Morterra, and S. Coluccia, J. Phys. Chem. 79, 972 (1975).CrossRefGoogle Scholar
  41. 41.
    Enemark, J. H., and R. D. Feltham, Coord. Chem. Rev. 138, 339 (1974).CrossRefGoogle Scholar
  42. 42.
    Gill, N. S., R. H. Nuttall, D. E. Scaife, and D. W. A. Sharp, J. Inorg. Nucl. Chem. 18, 79 (1961).CrossRefGoogle Scholar
  43. 43.
    Yuen, S., Y. Chen, J. E. Kubsh, J. A. Dumesic, N. Topsoe, and H. Topsoe, J. Phys. Chem. 86, 3022 (1982).CrossRefGoogle Scholar
  44. 44.
    Poling, G. W., and R. P. Eischens, J. Electrochem. Soc 113, 218 (1966).CrossRefGoogle Scholar
  45. 45.
    Tanabe, K., H., Ikeda, T. Iizuka, and H. Hattori, React. Kinet. Catal. Lett. 11, 149 (1979).CrossRefGoogle Scholar
  46. 46.
    Segawa, K, Y. Chen, J. E. Kubsh, W. N. Delgass, J. A. Dumesic, and W. K. Hall, J. Catal. 76, 112 (1982).CrossRefGoogle Scholar
  47. 47.
    Kenvin, J. C., Ph. D. thesis, Georgia Institute of Technology, Atlanta, GA (1990).Google Scholar
  48. 48.
    Kenvin, J. C., M. G. White, and M. B. Mitchell, Langmuir, 7, 1198 (1991).CrossRefGoogle Scholar
  49. 49.
    Kenvin, J. C., M. G. White, and M. B. Mitchell, 200th Meeting of the ACS, Washington, D. C., (August 1990).Google Scholar
  50. 50.
    Brunauer, S. P., P. Emmett, and E. Teller, J. Am. Chem. Soc. 60, 309 (1938).CrossRefGoogle Scholar
  51. 51.
    Rhodin, T. N., J. Am. Chem. Soc. 72, 4343 (1950).CrossRefGoogle Scholar
  52. 52.
    Rosenthal, D. J., MS thesis, Georgia Institute of Technology, Atlanta, GA (1985).Google Scholar
  53. 53.
    Kenvin, J. C., and M. G. White, J. Catal 130, 447 (1991).CrossRefGoogle Scholar
  54. 54.
    Amenomiya, Y., and R. J. Cvetanovic, J. Phys. Chem. 67, 144 (1963).CrossRefGoogle Scholar
  55. 55.
    Gorte, R. J., J. Catal. 75, 164 (1982).CrossRefGoogle Scholar
  56. 56.
    Demmin, R. A., and R. J. Gorte, J. Catal 90, 32 (1984).CrossRefGoogle Scholar
  57. 57.
    Brinen, J. L., M. S thesis, Georgia Institute of Technology, Atlanta, GA (1985).Google Scholar
  58. 58.
    Czanderna, A. W., Microbal. Tech. 6, 129 (1967).Google Scholar
  59. 59.
    Beckler, R. K., and M. G. White, J. Catal. 110, 364 (1988).CrossRefGoogle Scholar
  60. 60.
    Kohler, M. A., N. W. Cant, M. S. Wainwright, and D. L. Trimm, “The Mechanism of the Catalytic Chemistry of Ester Hydrogenolysis on Copper Surfaces”, 9th Int. Cong. Catal., Calgary, 1043 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Mark G. White
    • 1
  1. 1.School of Chemical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations