Modelling Ash Deposition during the Combustion of Low Grade Fuels

  • Jorma K. Jokiniemi
  • Jouni Pyykönen
  • Jussi Lyyränen
  • Pirita Mikkanen
  • Esko I. Kauppinen

Abstract

Deposit formation on external surfaces, such as heat exchangers, is a serious problem in many combustion processes. Deposits form from residue ash particles and from volatilized species that deposit either as tiny condensed particles or as vapour. With modelling it is possible to make predictions about the rate and the chemical composition of deposition resulting from a specified fuel fired in different process conditions. This paper discusses the modelling of different deposit formation mechanisms that are used in the ABC (Aerosol Behaviour in Combustion) code (Jokiniemi et al., 1994). When modelling deposition it is essential to know the ash particle size distribution and chemical composition and well as the composition of the flue gases. The emphasis in the ABC code and in this paper is in the deposition of species that have volatilized during combustion. The chemical composition of these species is often such that in deposits they make surfaces sticky for residue ash particles or their presence may lead to the sintering of the deposited layer or their presence can cause high temperature corrosion. The ABC model couples the description of deposition mechanisms with the description of ash particle formation from volatilized species and the respective gas phase chemistry. The amount of residue ash particles is given in input for the ABC code. Detailed descriptions of the deposition models applicable to the process conditions are given in this paper. As example cases we present model results of deposition in a kraft recovery boiler and in a medium speed diesel engine.

Keywords

Deposition Velocity Black Liquor Electrostatic Precipitator Exhaust Valve Fume Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahluwalia, R. K., Im, K. H, Chuang, C. F. and Hajduk, J-C. (1986). “Particle and Vapour Deposition in Coal-Fired Gas Turbines”, 31st Intl Gas Turbine Conference. Düsseldorf, West Germany, 86-GT-239.Google Scholar
  2. Baxter, B. L. (1993). “Ash deposition during biomass and coal combustion: A mechanistic approach”, Biomass and Bioenergy Vol. 4 No. 2, pp. 85–102.CrossRefGoogle Scholar
  3. Beér, J. M., Sarofim, A. F. and Barta, L. (1992). “From Properties of Coal Mineral Matter to Deposition Tendencies of Fly Ash–A Modelling route”,. Journal of the Institute of Energy, March 1992, 65, pp. 55–62.Google Scholar
  4. Davies, C. N. (1966). “Aerosol Science”, Academic Press Inc., London.Google Scholar
  5. Fan, F. and Ahmadi G. (1993). “A Sublayer Model for Turbulent Deposition of Particles in Vertical Ducts with Smooth and Rough Surfaces”,.1 Aerosol Sci.,24(45–64).Google Scholar
  6. Friedlander, S. K. and Johnstone, H. F. (1957). “Deposition of Suspended Particles from Turbulent Gas Streams”, Ind. Eng. Chem., 49, 1151.CrossRefGoogle Scholar
  7. Friedlander, S. K. (1977). “Smoke Dust and Haze”, John Wiley & Sons, New York.Google Scholar
  8. Helble, J., Neville, M., and Sarofim, A. F. (1986). “Aggregate Formation from Vaporized Ash during Pulverized Coal Combustion”, 21th Symp. (Int’l) on Combustion, pp. 41 1–417.Google Scholar
  9. Helble, J. J., Srinivasachar, S., Wilemski, G., Boni, A. A., Kang, S. -G., Sarofim, A. F., Graham, K. A., Beér, J. M., Peterson, T. W., Wendt, J. O. L., Gallagher, N. B., Bool, L. Huggins, F. E., Huffman, G. P., Shah, N. and Shah A. (1992). “Transformations of Inorganic Coal Constituents in Combustion Systems”, Final Report submitted to the U.S. DOE/PETC, November, Available from NTIS, Document DE/PC/90751-T15 (BE93013076). 3 volumes.Google Scholar
  10. Hinze, J. O. (1975). “Turbulence”, Chapter 5, McGraw Hill Book Co., New York.Google Scholar
  11. Im, K. H. and Chung, P. M. (1983). “Particulate Deposition from Turbulent Parallel Streams”, AIChE J 29 (3), 498.CrossRefGoogle Scholar
  12. Israel, R. and Rosner, D. E. (1983). “Use of a Generalized Stokes Number to Determine the Aerodynamic Capture Efficiency of Non-Stokesian Particles from a Compressible Gas Flow”, Aerosol Sci. and Tech. 2, pp. 45–51.CrossRefGoogle Scholar
  13. Jokiniemi, J., Lazaridis, M., Lehtinen, K. and Kauppinen, E. (1994). “Numerical simulation of vapour-aerosol dynamics in combustion processes”. J Aerosol Sci., Vol. 25 (3). pp. 429–446.CrossRefGoogle Scholar
  14. Jokiniemi, J., Pyykönen, J., Mikkanen, P. and Kauppinen, E. (1995). “Modelling Alkali Salt Deposition on Kraft Recovery Boiler Heat Exchangers”, Proceedings of the 1995 Int. Chem. Recovery Conference, Toronto, April 24–27, 1995. pp. 77–87.Google Scholar
  15. Langmuir, I. and Blodgett (1946). U.S. Army TR 5418.Google Scholar
  16. Lee, F. C. C., Ghobadian, A. and Rilet G. S. (1993). “Prediction of Ash Deposition in a Pulverised Coal-Fired Axisymmetric Furnace”, In: Williamson, J. and Fraser W. (eds.) The Impact of Ash Deposition on Coal Fired Plants. The Engineering Foundation Conference Proceedings, Solihull, UK, June 20–25, 1993. pp. 247258.Google Scholar
  17. Levenspiel, O. (1972). Chemical Reaction Engineering. 2nd ed. John Wiley & Sons, New York.Google Scholar
  18. Mikkanen, P, Kauppinen, E. I. and Jokiniemi, J. K. (1994 a) “The Effect of Black Liquor Characteristics on Alkali Salt Aerosols in Industrial Recovery Boilers”, 30 Years Recovery Boiler Co-operation in Finland. Int. Conf., Baltic Sea, 24–26 May 1994.Google Scholar
  19. Mikkanen, P., Kauppinen, E. I., Jokiniemi, J. K., Sinquefield, S. A., Frederick, W. J. (1994 b) “Bimodal Fume Particle Size Distributions from Recovery Boiler and Laboratory Scale Black Liquor Combustion”, Tappi J. 77(12).Google Scholar
  20. Mikkanen, P., Kauppinen, E. 1., Jokiniemi, J. K., Sinquefield, S. A., Frederick, W. J. and Mäkinen, M. (1994 c) “The Particle Size and Chemical Species Distributions of Aerosols Generated in Kraft Black Liquor Pyrolysis and Combustion”, The 1993 Forest Products Symposium. AIChE Symposium Series 90, pp. 46–54.Google Scholar
  21. Mikkanen, P., Kauppinen, E. I., Jokiniemi, J. and Mäkinen, M. (1995), “Characteristics of Aerosols from Industrial Scale Black Liquor Combustion”, To be submitted for publication in J. Aer. Sci.Google Scholar
  22. Schlichting, H., “Boundary Layer Theory”, Pergamon Press, London (1951).Google Scholar
  23. Springer, G. S. (1970). “Thermal Force on Particles in the Transition Regime”, J. of Colloidal Sci. 34 (215–220).Google Scholar
  24. Talbot, L., Cheng, R. K., Schefer, R. W. and Willis, D. R. (1980). “Thermophoresis of Particles in a Heated Boundary Layer”, J Fluid Mech. 101 (4), 737.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jorma K. Jokiniemi
    • 1
  • Jouni Pyykönen
    • 1
  • Jussi Lyyränen
    • 1
  • Pirita Mikkanen
    • 2
  • Esko I. Kauppinen
    • 2
  1. 1.VTT EnergyVTT Aerosol Technology GroupFinland
  2. 2.VTT Chemical TechnologyVTT Aerosol Technology GroupFinland

Personalised recommendations