Skip to main content

Abstract

Energy production from combustion or gasification of biomass has recently attracted increased interest. These fuels form a valuable indigenous energy resource for some countries. They represent also an attractive way to decrease CO2 emissions from the energy production. The development of new combustion and gasification techniques, such as atmospheric or pressurized fluidized bed combustion and gasification has also made it possible to utilize biomass in a more feasible way than before. The availability of these new energy conversion systems is, however, still unknown. Among other questions the behavior of ash can be critical.

In this paper we present some initial results from an ash characterization work performed on 10 different types of biomass ashes with the focus on the new energy conversion systems. The characterization methods were the following:

  1. 1)

    Ash thermal behavior analyzed with a combined differential thermal, thermogravimetric analyzer (DTA/TGA).

  2. 2)

    Ash sintering tendency with the compression strength sintering testing method. Ashes tested in both oxidizing and reducing conditions, in temperatures ranging from 500–1000°C. Selected ashes tested further in 100% CO2(g).

  3. 3)

    Chemical analyses of the ashes and sintering tested samples.

  4. 4)

    Standard fuel characterization analyses.

  5. 5)

    Reactivity analyses for selected biomasses.

The results showed clear differences in the thermal behavior of the ashes. The sintering tendencies varied significantly. The chemical analyses showed that ashes rich in silicon started to sinter at 800–900°C both in oxidizing and reducing conditions, while ashes with low silicon content did not. These ashes showed instead an increase in sintering at approximately 700°C and a decrease above 700°C when CO2(g) was present in the gas atmosphere. In some cases the sintering tendency of the ash also correlated with the gasification reactivity of the corresponding biomass.

The results and their relevance to full scale conversion systems are discussed in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnhart, D. H., Williams, P. C.: Trans. ASME 78, 1229 (1956).

    CAS  Google Scholar 

  • Baxter, L.: Biomass and Bioenergy 4 (2), 89 (1993)

    Article  Google Scholar 

  • Dawson, M., Brown, R., C.: Fuel 71, 585 (1991).

    Article  Google Scholar 

  • Hupa, M., Skrifvars, B-J., Moilanen, A.: J. Inst. Energy 62, 131 (1989)

    CAS  Google Scholar 

  • Moilanen, A., Kurkela, E.: Gasifications reactivity of solid biomass fuels, Proc. of the 210th ACS Div. of Fuel Chemistry Conference, Vol. 40, No 3, pp. 688–693, 1995.

    CAS  Google Scholar 

  • Nordin, A.: Fuel 74, 615 (1995)

    Article  CAS  Google Scholar 

  • Nordin, A., Skrifvars, B-J, Öhman, M., Hupa, M.: “Agglomeration and defluidization in FBC of biomass fuels - Mechanisms and measures for prevention”, presented at the Eng. Found. Conf., July 16–21, 1995, Waterville Valley, NH, USA

    Google Scholar 

  • Skrifvars, B-J., Hupa, Hyöty, P.: J. Inst. Energy 64, 196 (1991)

    CAS  Google Scholar 

  • Skrifvars, B-J., Hupa, Hiltunen, M.: Ind. & Eng. Chem. Res. 31, 1026 (1992)

    Article  CAS  Google Scholar 

  • Skrifvars, B-J., Hupa, Backman, R., Hiltunen, M.: Fuel 73, 171 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Skrifvars, BJ., Hupa, M., Moilanen, A., Lundqvist, R. (1996). Characterization of Biomass Ashes. In: Baxter, L., DeSollar, R. (eds) Applications of Advanced Technology to Ash-Related Problems in Boilers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9223-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9223-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9225-6

  • Online ISBN: 978-1-4757-9223-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics