Apoptosis pp 117-135 | Cite as

Molecular Controls of Cell Cycle Progression Following DNA Damage: Roles of P53 and Ataxia-Telangiectasia Gene Products

  • Michael B. Kastan
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 5)


It has been suggested that exposure to environmental DNA damaging agents contributes to the development of the vast majority of human tumors1. Therefore, an understanding of the molecular events involved in the cellular responses to such exposures should provide insights into mechanisms of human carcinogenesis. Much effort over the past 25 years has been focused on how altered nucleotide bases are removed and how the linear integrity of the DNA sequence is restored2. More recently, it has become clear that the timing of these repair processes relative to various critical cellular processes, such as DNA replication, may be important determinants for dictating the cellular consequences of the DNA damage. For example, a cell which continues to replicate its DNA prior to repairing lesions in the DNA may be more likely to result in daughter cells which have altered genetic information relative to the parental cell. It would be predicted that such altered daughter cells would be more likely to develop the genetic changes which contribute to a transformed phenotype (Figure 1).


Cell Cycle Checkpoint Ataxia Telangiectasia Nijmegen Breakage Syndrome Mdm2 Gene GADD Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Doll and R. Peto, The causes of cancer in the United States today, J.N.C.I. 66:1192, (1981).Google Scholar
  2. 2.
    P.C. Hanawalt, P.K.Cooper, A.K Ganesan, R.S. Lloyd, C.A.Smith, and M.E.Zolan, Repair responses to DNA damage: enzymatic pathways in E coli and human cells , J. Cell. Biochem. 18:271 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    L. J. Tolmach, R. W. Jones, and P. M. Busse, The action of caffeine on X-irradiated HeLa cells. I. Delayed inhibition of DNA synthesis, Rad. Res.71: 653 (1977).CrossRefGoogle Scholar
  4. 4.
    R. B. Painter and B. R. Young, Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc. Natl. Acad. Sci. USA.77:7315 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    C. C. Lau and A. B. Pardee, Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc. Natl Acad. Sci. USA79:2942 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    T. A. Weinert and L. H. Hartwell, The RAD9 gene controls the cell cycle response to DNA damage in saccharomyces cerevisiae. Science 241:317(1988).PubMedCrossRefGoogle Scholar
  7. 7.
    W. K. Kaufmann, J. C. Boyer, L. L. Estabrooks, and S. J. Wilson, Inhibition of replicon initiation in human cells following stabilization of topoisomerase-DNA cleavable complexes. Mol. Cell Biol.11:3711(1991).PubMedGoogle Scholar
  8. 8.
    P. M. O’Connor, D. K. Ferris, G. A. White, J. Pines, T. Hunter, D. L. Longo, and K. W. Kohn, Relationships between cdc2 kinase, DNA cross-linking, and cell cycle perturbations induced by nitrogen mustard. Cell Growth and Diff. 3:43 (1992).Google Scholar
  9. 9.
    L. H. Hartwell and T. A. Weinert, Checkpoints: Controls that ensure the order of cell cycle events. Science 246:629 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 51:6304 (1991).PubMedGoogle Scholar
  11. 11.
    B. Vogelstein, A deadly inheritance. Nature348: 681 (1991).CrossRefGoogle Scholar
  12. 12.
    M. Hollstein, D. Sidransky, B. Vogelstein, and C. C. Harris. p53 mutations in human cancers. Science 253:49 (1991).PubMedCrossRefGoogle Scholar
  13. 13.
    S. J. Kuerbitz, B. S. Plunkett, W. V. Walsh, and M. B. Kastan, Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA89:7491 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    M. B. Kastan, Q. Zhan, W. S. El-Deiry, F. Carner, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace Jr., A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45is defective in ataxia telangiectasia. Cell, 71:587 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    R. A. Walters, L. R. Gurley, and R. A. Tobey, Effects of caffeine on radiation-induced phenomena associated with cell-cycle traverse of mammalian cells. Biophys. J. 14:99 (1974).PubMedCrossRefGoogle Scholar
  16. 16.
    M. S. Satoh and T. Lindahl, Role of poly(ADP-ribose) formation in DNA repair. Nature356:356(1992).PubMedCrossRefGoogle Scholar
  17. 17.
    M. R. James and A. R. Lehmann. Role of poly(adenosine diphosphate ribose) in deoxyribonucleic acid repair in human fibroblasts. Biochemistry 21:4007 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    R.B. Painter, 3-Aminobenzamide does not affect radiation-induced inhibition of DNA synthesis in human cells. Mut. Res.143:113 (1985).CrossRefGoogle Scholar
  19. 19.
    P. J. McKinnon, (1987). Ataxia-telangiectasia: an inherited disorder of ionizing -radiation sensitivity in man. Hum. Genet.75:197(1987).PubMedCrossRefGoogle Scholar
  20. 20.
    R. A. Gatti, E. Boder, H. V. Vinters, R. S. Sparkes, A. Norman, and K. Lange, Ataxia-telangiectasia: an interdisciplinary approach to pathogenesis, 70:99 (1991).Google Scholar
  21. 21.
    N. S. Rudolph and S. A. Latt, Flow cytometric analysis of x-ray sensitivity in ataxia-telangiectasia. Mut. Res.211:31 (1989).CrossRefGoogle Scholar
  22. 22.
    N. G. J. Jaspers, R. A. Gatti, C. Baan, P. C. M. L. Luissen, and D. Bootsma, Genetic complementation analysis of ataxia telangiectasia and Nijmegen breakage syndrome: a survey of 50 patients. Cytogenet. Cell. Genet. 49:259(1988).PubMedCrossRefGoogle Scholar
  23. 23.
    M. A. Papathanasiou, N. C. Kerr, J. H. Robbins, O. W. McBride, I. J. Alamo, S. F. Barrett, I. D. Hickson, and A. J. Fornace Jr., Induction by ionizing radiation of the gadd45 gene in cultured human cells: lack of mediation by protein kinase C. Mol Cell Biol11:1009 (1991).PubMedGoogle Scholar
  24. 24.
    S. Fakharzadeh, R. S. Trusko, and D. L. George, Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10: 1565, (1991).PubMedGoogle Scholar
  25. 25.
    J. Momand, G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237(1992).PubMedCrossRefGoogle Scholar
  26. 26.
    J. D. Oliner, K. W. Kinzler, P. S. Meltzer, D. L. George, and B. Vogelstein, Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358:80 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    Y. Barak, T. Juven, R. Haffher, and M. Oren, mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461, (1993).PubMedGoogle Scholar
  28. 28.
    X. Wu, H. Bayle, D. Olson, and A.J. Levine, The p53-mdm2 autoregulatory feedback loop. Genes and Development(in press, 1993).Google Scholar
  29. 29.
    D. Morrell, E. Cromartie, and M. Swift, Mortality and cancer incidence in 263 patients with ataxia-telangiectasia. J. Natl. Cancer Inst. 77:89 (1986).PubMedGoogle Scholar
  30. 30.
    F. Hecht and B. K. Hecht, Cancer in Ataxia-telangiectasia patients. Cancer Genet.Cytogenet 46:9(1990).PubMedCrossRefGoogle Scholar
  31. 31.
    L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, J. S. Butel, and A. Bradley, Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours, Nature 356:215, (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    T. Jacks and R. Weinberg, unpublished observations.Google Scholar
  33. 33.
    D. Malkin, F. P. Li, L. C. Strong, J. F. Fraumeni, Jr., C. E. Nelson, D. H. Kim, J. Kassel, M. A. Gryka, F. Z. Bischoft, M. A. Tainsky, and S. H. Friend, Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science250:1233 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    S. Srivasta, Z. Zou, K. Pirollo, W. Blattner, and E. H. Chang, Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature348:747 (1990).CrossRefGoogle Scholar
  35. 35.
    M. Swift, P. J. Reitnauer, D. Morrell, and C. L. Chase, Breast and other cancers in families with ataxia-telangiectasia. N Engl. J. Med.316:1289 (1987).PubMedCrossRefGoogle Scholar
  36. 36.
    M. Swift, D. Morrell, R. B. Massey, and C. L. Chase, Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl. J. Med. 325:1831 (1991).Google Scholar
  37. 37.
    T.A. Weinert and L. H. Hartwell, Characterization of RAD9 of saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol Cell. Biol.10:6554 (1990).PubMedGoogle Scholar
  38. 38.
    F. Zampetti-Bosseler and D. Scott, Cell death, chromosome damage and mitotic delay in normal human, ataxia telangiectasia and retinoblastoma fibroblasts after X-irradiation. Int. J. Radial Biol 39:547(1981).CrossRefGoogle Scholar
  39. 39.
    H. Nagasawa, S. A. Latt, M. E. Lalande, and J. B. Little, Effects of x-irradiation on cell-cycle progression, induction of chromosomal aberrations and cell killing in ataxia telangiectasia (AT) fibroblasts. Mut. Res.148:71 (1985).CrossRefGoogle Scholar
  40. 40.
    L. R. Livingstone, A. White, J. Sprouse, E. Livanos, T. Jacks, and T. D. Tlsty, Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    Y. Yin, M. A. Tainsky, F. Z. Bischoff, L. C. Strong, and G. M. Wahl, Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937 (1992).PubMedCrossRefGoogle Scholar
  42. 42.
    F. Bischoff, S. O. Yim, S. Pathak, G. Grant, M. J. Siciliano, B. C. Giovaenella, L. C. Strong, and M. A. Tainsky, Spontaneous immortalization of normal fibroblasts from patients with Li-Fraumeni cancer syndrome. Cancer Res. 50:7979, 1990.PubMedGoogle Scholar
  43. 43.
    E. Solomon, J. Borrow, and A. D. Goddard, Chromosome aberrations and cancer. Science 254:1153(1991).PubMedCrossRefGoogle Scholar
  44. 44.
    A. R. Lehman, C. F. Arlett, J. F. Burke, M. H. L. Green, M. R. James, and J. E. Lowe, A derivative of an ataxia-telangiectasia (A-T) cell line with normal radiosensitivity but A-T-like inhibition of DNA synthesis. Int. J. Radiat. Biol.49:639 (1986).CrossRefGoogle Scholar
  45. 45.
    L. N. Kapp and R. B. Painter, Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells. Int. J. Radiat. Biol. 56:667 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    C. Lambert, R. A. Schultz, M. Smith, C. Wagner-McPherson, D. McDaniel, T. Donlon, E. J. Stanbridge, and E. C. Friedberg, (1991). Functional complementation of ataxia-telangiectasia group D (AT-D) cells by microcell-mediated chromosome transfer and mapping of the AT-D locus to the region llq22–23. Proc. Natl. Acad. Sci. USA88:5907 (1991).PubMedCrossRefGoogle Scholar
  47. 47.
    N. Sullivan, and L. Lyne, Sensitivity of fibroblasts derived from ataxia-telangiectasia patients to calicheamicm γ1. Mut. Res. 245: 171 (1990).CrossRefGoogle Scholar
  48. 48.
    E. Yonisch-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345 (1991).CrossRefGoogle Scholar
  49. 49.
    S. W. Lowe, E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks, p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    A. R. Clarke, C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper, and A. H. Wylie. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849 (1993).PubMedCrossRefGoogle Scholar
  51. 51.
    J. M. Lee and A. Bernstein, p53 mutations increase resistance to ionzing radiation. Proc.Natl. Acad. Sci. USA 90:5742 (1993).PubMedCrossRefGoogle Scholar
  52. 52.
    W. J. Slichenmyer, W.G. Nelson, R.J. Slebos, and M.B. Kastan. Cancer Res. 53:4164 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael B. Kastan
    • 1
  1. 1.The Johns Hopkins Oncology CenterBaltimoreUSA

Personalised recommendations