Regulation of Apoptosis by the Transforming Gene Products of Adenovirus
Chapter
Abstract
The DNA tumor virus adenovirus infects human cells, recruits them into a proliferative state, and borrows elements of the host cell transcription, translation, and DNA replication machinery to reproduce viral proteins and DNA. In rodent cells which are semipermissive for adenovirus infection, cell growth is deregulated but virus replication is ineffective. As the viral infection does not progress to completion, the deregulation of cell growth control produces transformation. The viral genes required for oncogenic transformation are the E1A and E1B oncogenes.
Keywords
HeLa Cell Human Papilloma Virus Cell Growth Control Infected Human Cell SV40 Large Tumor Antigen
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.S. Pilder, J. Logan, and T. Shenk, Deletion of the gene encoding the adenovirus 5 early region 1B-21,000-molecular weight polypeptide leads to degradation of viral and cellular DNA, J. Virol, 52:664(1984).PubMedGoogle Scholar
- 2.N. Takemori, C. Cladaras, B. Bhat, A.J. Conley, and W.S.M. Wold, cyt gene of adenovirus 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide, J. Virol, 52:793 (1984).PubMedGoogle Scholar
- 3.E. White, T. Grodzicker, and B.W. Stillman, Mutations in the gene encoding the adenovirus E1B 19K tumor antigen cause degradation of chromosomal DNA, J. Virol, 52:410 (1984).PubMedGoogle Scholar
- 4.E. White, S.H. Blose, and B. Stillman, Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA, Mol Cell Biol, 4:2865 (1984).PubMedGoogle Scholar
- 5.T. Subramanian, M. Kuppuswamy, J. Gysbers, S. Mak, and G. Chinnadurai, 19-kDa tumor antigen coded by early region Elb of adenovirus 2 is required for efficient synthesis and for protection of viral DNA, J. Biol Chem., 259:11777 (1984).PubMedGoogle Scholar
- 6.E. White, R. Cipriani, P. Sabbatini, and A. Denton, The adenovirus E1B 19-Kilodalton protein overcomes the cytotoxicity of EIA proteins, J. Virol, 65:2968 (1991).PubMedGoogle Scholar
- 7.L.R. Gooding, L. Aquino, P.J. Duerksen-Hughes, D. Day, T.M. Horton, S. Yei, and W.S.M. Wold, The E1B-19K protein of group C adenoviruses prevents cytolysis by tumor necrosis factor of human cells but not mouse cells, J. Virol, 65:3083 (1991).PubMedGoogle Scholar
- 8.S. Hashimoto, A. Ishii, and S. Yonehara, The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody, Int. Immunol, 3:343 (1991).PubMedCrossRefGoogle Scholar
- 9.E. White, P. Sabbatini, M. Debbas, W.S.M. Wold, D.I. Kusher, and L. Gooding, The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor a, Mol Cell Biol, 12:2570 (1992).PubMedGoogle Scholar
- 10.E. White and B. Stillman, Expression of the adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins, J. Virol, 61:426 (1987).PubMedGoogle Scholar
- 11.E. White and L.R. Gooding, Regulation of apoptosis by human adenoviruses, in Apoptosis: The Molecular Basis for Cell Death II, (in press) (1993).Google Scholar
- 12.E. White, Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus, Proc. Soc. Exp. Biol Med., (in press) (1993).Google Scholar
- 13.E. Moran, E1A/T antigen/E7 and the cell cycle, Cur. Opin. Gen. Dev., 3:63 (1993).CrossRefGoogle Scholar
- 14.T. Shenk and J. Flint, Transcriptional and transforming activities of the adenovirus E1A proteins, Adv. Cancer Res., 57:47(1991).PubMedCrossRefGoogle Scholar
- 15.A.J. Berk, Adenovirus promoters and E1A transactivation, Annu. Rev. Genet., 20:5 (1986).CrossRefGoogle Scholar
- 16.N. Dyson and E. Harlow, Adenovirus E1A targets key regulators of cell proliferation, Cancer Surv., 12:161 (1992).PubMedGoogle Scholar
- 17.P. Whyte, K. Buchkovich, J.M. Horowitz, S.H. Friend, M. Raybuck, R.A. Weinbert, and E. Harlow, Associtation between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product, Nature (London), 334:124 (1988).CrossRefGoogle Scholar
- 18.R.A. Weinberg, Tumor suppressor genes, Science, 254:1138 (1992).CrossRefGoogle Scholar
- 19.J.R. Nevins, E2F: A link between the Rb tumor suppressor protein and viral oncoproteins, Science, 258:424(1992).PubMedCrossRefGoogle Scholar
- 20.L. Rao, M. Debbas, P. Sabbatini, D. Hockenberry, S. Korsmeyer, and E. White, The adenovirus E1A proteins induce apoptosis which is inhibited by the E1B 19K and Bcl-2 proteins, Proc. Natl. Acad. Sci. USA, 89:7742 (1992).PubMedCrossRefGoogle Scholar
- 21.E. White and R. Cipriani, Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein, Mol. Cell. Biol., 10:120(1990).PubMedGoogle Scholar
- 22.Y. Tsujimoto, J. Gorham, J. Cossman, E. Jaffe, and C.M. Croce, The t(14;18) chromosome translocations involved in B cell neoplasms result from mistakes in VDJ joining, Science, 229:1390 (1985).PubMedCrossRefGoogle Scholar
- 23.A. Bakhshi J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein, and S.J. Korsmeyer., Cloning the chromosomal break-point of the t(14:18) human lymphomas: cloustering around JH on Chromosome 14 and near a transcriptional unit on 18, Cell, 41:889 (1985).CrossRefGoogle Scholar
- 24.M.L. Cleary and J. Sklar, Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint cluster region near a transcriptionally active loucus on chromosome 18, Proc. Natl. Acad. Sci. USA, 82:7439 (1985).PubMedCrossRefGoogle Scholar
- 25.T.E. Allsopp, S. Wyatt, H.F. Paterson, and A.M. Davies, The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis, Cell, 73:295 (1993).PubMedCrossRefGoogle Scholar
- 26.I. Garcia, I. Martinou, Y. Tsujimoto, and J.-C. Martinou, Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene, Science, 258:302 (1992).PubMedCrossRefGoogle Scholar
- 27.G. Nunez, L. London, D. Hockenbery, J.P. McKearn, and S.J. Korsmeyer, Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hematopoietic cell lines, J. Immunol., 144:3602(1990).PubMedGoogle Scholar
- 28.D.L. Vaux, S. Cory, and T.M. Adams, Bcl-2 promotes the survival of haemopoietic cells and cooperates with c-myc to immortalize pre-b cells, Nature (London), 335:440 (1988).CrossRefGoogle Scholar
- 29.T.J. McDonnell and S.J. Korsmeyer, Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14:18), Nature (London), 349:254 (1991).CrossRefGoogle Scholar
- 30.T.J. McDonnell, N. Deane, F.M. Platt, G. Nunez, U. Jaeger, J.P. McKearn, and S.J. Korsmeyer, bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation, Cell, 57:79 (1989).PubMedCrossRefGoogle Scholar
- 31.G. Nunez, D. Hockenbery, T.J. McDonnell, C.M. Sorensen, and S.J. Korsmeyer, Bcl-2 maintains B cell memory, Nature (London), 353:71 (1991).CrossRefGoogle Scholar
- 32.P. Sarnow, Y.S. Ho, J. Williams, and A.J. Levine, Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells, Cell, 28:387(1982).PubMedCrossRefGoogle Scholar
- 33.P.R. Yew and A.J. Berk, Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein, Nature (London), 357:82 (1992).CrossRefGoogle Scholar
- 34.J. Martinez, I. Georgoff, and J.M.A.J. Levine, Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein, Genes & Dev., 5:151 (1991).CrossRefGoogle Scholar
- 35.L. Diller, J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Geghardt, and B. Bressac, p53 functions as a cell cycle control protein in osteosarcomas, Mol. Cell. Biol, 10:5772 (1990).PubMedGoogle Scholar
- 36.E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature (London), 352:345 (1991).CrossRefGoogle Scholar
- 37.M. Debbas and E. White, Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B, Genes Dev., 7:546 (1993).PubMedCrossRefGoogle Scholar
- 38.J. Momand, G.P. Zambetti, D.C Olson, D. George, and A.J. Levine, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, 69:1237 (1992).PubMedCrossRefGoogle Scholar
- 39.J.D. Oliner, K.W. Kinzler, P.S. Meltzer, D.L. George, and B. Vogelstein, Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature (London), 358:80 (1992).CrossRefGoogle Scholar
- 40.J.D. Oliner, J. Pietenpol, S. Thiagalingam, J. Gyuris, K.W. Kinzler, and B. Vogelstein, Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53, Nature (London), 362:857 (1993).CrossRefGoogle Scholar
- 41.M. Scheffner, B.A. Werness, J.M. Hulbregtse, A.J. Levine, and P.M. Howley, The E6 oncopretein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell, 63:1129 (1990).PubMedCrossRefGoogle Scholar
- 42.S. Lowe and H.E. Ruley, Stabilization of the p53 tumor suppressor is induced by adenovirus-5 E1A and accompanies apoptosis, Genes Dev., 7:535 (1993).PubMedCrossRefGoogle Scholar
- 43.S.-K. Chiou, L. Rao, and E. White, Bcl-2 blocks p53-dependent apoptosis, (submitted).Google Scholar
- 44.M.D. Jacobson, J.F. Burne, M.P. King, T. Miyashita, J.C. Reed, and M.C. Raff, Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA, Nature (London), 361:365 (1993).CrossRefGoogle Scholar
- 45.S.K. Chiou, C.C. Tseng, L. Rao, P. Verwaerde, and E. White, Funtional complementation of the bcl-2 protooncogene for the adenovirus E1B 19K gene, (in preparation).Google Scholar
- 46.P. Monagan, D. Robertson, T.A. Amos, M.J. Dyer, D.Y. Mason, and M.F. Greaves, Ultrastructural localization of Bcl-2 protein, J. Histochem. Cytochem., 40:1819 (1992).CrossRefGoogle Scholar
- 47.D. Hockenbery, G. Nunez, C. Milliman, R.D. Schreiber, and S. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature (London), 348:334 (1990).CrossRefGoogle Scholar
- 48.T. Hennet, G. Bertoni, C. Richter, and E. Peterhans, Expression of Bcl-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity, Can. Res., 53:1456 (1993).Google Scholar
- 49.M.Y. Mapara, R. Bargou, C. Zugek, H. Dohner, F. Ustaoglu, R. Jonker, P.H. Krammer, and B. Dorken, APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression, Eur. J. Immunol., 23:702 (1993).PubMedCrossRefGoogle Scholar
- 50.B. Vanhaesebroeck, J.C. Reed, D. DeValck, J. Grooten, T. Miyashita, S. Tanaka, R. Beyaert, F. VanRoy, and W. Fiers, Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity, Oncogene, 8:1075 (1993).PubMedGoogle Scholar
- 51.C.H. Herrmann and M.B. Mathews, The Adenovirus E1B 19-Kilodalton Protein Stimulates Gene Expression by Increasing DNA Levels, Mol. Cell. Biol., 9:5412 (1989).PubMedGoogle Scholar
- 52.N. Takemori, J.L. Riggs, and C. Aldrich, Genetic studies with tumorigenic adenoviruses. I. Isolation of cytocidal (cyt) mutants of adenovirus type 12, Virology, 36:575 (1968).PubMedCrossRefGoogle Scholar
- 53.Y. Tsujimoto and C.M. Croce, Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma, Proc. Natl. Acad. Sci. USA, 83:5214 (1986).PubMedCrossRefGoogle Scholar
- 54.M.L. Cleary, S.D. Smith, and J. Sklar, Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation, Cell, 47:19 (1986).PubMedCrossRefGoogle Scholar
- 55.M. Negrini, F. Silinui, C. Kozak, Y. Tsujimoto, and C.M. Croce, Molecular analysis of mbcl-2: structure and expression of the murine gene homologous to the human gene involved in follicular lymphoma, Cell, 49:455 (1987).PubMedCrossRefGoogle Scholar
- 56.D.L. Cazals-Hatem, D. Louie, S. Tanaka, and J.C. Reed, Molecular cloning and DNA sequence analysis of cDNA encoding chicken homologue of the Bcl-2 oncoprotein, Biochem. Biophys. Acta, 1132:109(1992).PubMedCrossRefGoogle Scholar
- 57.K.M. Kozopas, T. Yang, H.L. Buchan, P. Zhou, and R.W. Craig, MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL-2, Proc. Natl. Acad. Sci. USA, 90:3516 (1993).PubMedCrossRefGoogle Scholar
- 58.G.R. Pearson, J. Luka, L. Petti, J. Sample, M. Birkenbach, D. Braun, and E. Kieff, Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex, Virology, 160:151(1987).PubMedCrossRefGoogle Scholar
- 59.M.O. Hengartner, R.E. Ellis, and H.R. Hovitz, Caenorhabditis elegans gene ced-9 protects cells from programmed cell death, Nature (London), 356:494 (1992).CrossRefGoogle Scholar
- 60.L. Kaczmarek, B. Ferguson, M. Rosenberg, and R. Baserga, Induction of cellular DNA synthesis by purified adenovirus E1A proteins, Virology, 152:1 (1986).PubMedCrossRefGoogle Scholar
- 61.S. Stabel, P. Argos, and L. Philipson, The release of growth arrest by microinjection of adenovirus E1A DNA, EMBO J., 4:2329 (1985).PubMedGoogle Scholar
- 62.W. Maltzman and L. Czyzyk, UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells, Mol. Cell. Biol., 4:1689 (1984).PubMedGoogle Scholar
- 63.M.B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, and R.W. Craig, Participation of p53 protein in the cellular response to DNA damage, Cancer Res., 51:6304 (1991).PubMedGoogle Scholar
- 64.M.B. Kastan, Q. Zhan, W.S. El-Deiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein, and A.J. Fornace, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell, 13:587 (1992).CrossRefGoogle Scholar
- 65.S.J. Kuerbitz, B.S. Plunkett, W.V. Walsh, and M.B. Kastan, Wild-type p53 is a cell cycle checkpoint determinant following irradiation, Proc. Natl. Acad. Sci. USA, 89:7491 (1992).PubMedCrossRefGoogle Scholar
- 66.A.R. Clarke, C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie, Thymocyte apoptosis induced by p53-dependent and independent pathways, Nature (London), 362:849(1993).CrossRefGoogle Scholar
- 67.S.W. Lowe, E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks, p53 is required for radiation-induced apoptosis in mouse thymocytes, Nature (London), 362:847 (1993).CrossRefGoogle Scholar
- 68.A.H. Wyllie, K.A. Rose, R.C Morris, C.M. Steel, E. Foster, and D.A. Spandidos, Rodent fibroblast tumours expressing human myc and ras genes: growth, matastasis and endogenous oncogene expression, Brit. J. Cancer, 56:251 (1987).PubMedCrossRefGoogle Scholar
- 69.D.S. Askew, R.A. Ashmun, B.C. Simmons, and J.L. Cleveland, Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis, Oncogene, 6:1915(1991).PubMedGoogle Scholar
- 70.G.I. Evan, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock, Induction of apoptosis in fibroblasts by c-myc protein, Cell, 69:119 (1992).PubMedCrossRefGoogle Scholar
- 71.Y. Shi, J.M. Glynn, L. Guilbert, T.G. Cotter, R.P. Bissonnette, and G.D. R., Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science, 257:212 (1992).PubMedCrossRefGoogle Scholar
- 72.R.J. Smeyne, M. Vendrell, M. Hayward, S.J. Baker, G.G. Maio, K. Schilling, L.M. Robertson, T. Curran, and J.I. Morgan, Continuous c-fos expression prededes programmed cell death in vivo, Nature (London), 363:166 (1993).CrossRefGoogle Scholar
- 73.R.P. Bissonnette, F. Echeverri, A. Mahboubi, and D. Green, Apoptotoc cell death induced by c-myc is inhibited by bcl-2. Nature (London), 359:552 (1992).CrossRefGoogle Scholar
- 74.A. Fanidi, E. A. Harrington, and G. Evan, Cooperative interaction between c-myc and bcl-2 protooncogenes. Nature (London), 359:554 (1992).CrossRefGoogle Scholar
- 75.J.-X. Lin and J. Vilcek, Tumor necrosis factor aand interleukin-1 cause a rapid and transient stimulation of c-fos and c-myc mRNA levels in human fibroblasts, J. Biol. Chem., 262:11908 (1987).PubMedGoogle Scholar
- 76.M.C Raff, Social controls on cell survival and cell death. Nature (London), 356:398 (1992).CrossRefGoogle Scholar
- 77.D.M. Hockenbery, M. Zutter, W. Hickey, M. Nahm, and S.J. Korsmeyer, Bcl-2 protein is topographically restricted in tissues characterized by apoptotic death, Proc. Natl. Acad. Sci. USA, 88:6961 (1991).PubMedCrossRefGoogle Scholar
- 78.C.L. Sentman, J.R. Shutter, D. Hockenbery, O. Kanagawa, and S.J. Korsmeyer, bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes, Cell, 67:879 (1991).PubMedCrossRefGoogle Scholar
- 79.A. Strasser, A.W. Harris, and S. Cory, bcl-2 transgene inhibits T cell death and perturbs thymic selfcensorship, Cell, 67:889 (1991).PubMedCrossRefGoogle Scholar
- 80.H. Land, L.F. Parada, and R.A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (London), 304:596 (1983).CrossRefGoogle Scholar
- 81.H.E. Ruley, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature (London), 304:602 (1983)CrossRefGoogle Scholar
- 82.L.A. Donehower, M. Harvey, B.L. Slagle, M.J. McArthur, J. Montgomery C.A. J.S. Butel, and A. Bradley, Mice deficient for p53 are developmentally normal but suceptible to spontaneous tumors. Nature (London), 356:215 (1992).CrossRefGoogle Scholar
- 83.E.S. Alnemri, T.F. Fernandes, S. Haldar, C.M. Croce, and G. Litwack, Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias, Cancer Res., 52:491 (1992).PubMedGoogle Scholar
- 84.G.P. Zambetti and A.J. Levine, A comparison of the biological activities of wild-type and mutant p53, FASEB J., (in press) (1993).Google Scholar
Copyright information
© Springer Science+Business Media New York 1994