Apoptosis pp 47-62 | Cite as

Regulation of Apoptosis by the Transforming Gene Products of Adenovirus

  • Eileen White
  • Lakshmi Rao
  • Shiun-Kwei Chiou
  • Ching-Chun Tseng
  • Peter Sabbatini
  • Michelle Gonzalez
  • Philippe Verwaerde
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 5)

Abstract

The DNA tumor virus adenovirus infects human cells, recruits them into a proliferative state, and borrows elements of the host cell transcription, translation, and DNA replication machinery to reproduce viral proteins and DNA. In rodent cells which are semipermissive for adenovirus infection, cell growth is deregulated but virus replication is ineffective. As the viral infection does not progress to completion, the deregulation of cell growth control produces transformation. The viral genes required for oncogenic transformation are the E1A and E1B oncogenes.

Keywords

HeLa Cell Human Papilloma Virus Cell Growth Control Infected Human Cell SV40 Large Tumor Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Pilder, J. Logan, and T. Shenk, Deletion of the gene encoding the adenovirus 5 early region 1B-21,000-molecular weight polypeptide leads to degradation of viral and cellular DNA, J. Virol, 52:664(1984).PubMedGoogle Scholar
  2. 2.
    N. Takemori, C. Cladaras, B. Bhat, A.J. Conley, and W.S.M. Wold, cyt gene of adenovirus 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19,000-molecular-weight polypeptide, J. Virol, 52:793 (1984).PubMedGoogle Scholar
  3. 3.
    E. White, T. Grodzicker, and B.W. Stillman, Mutations in the gene encoding the adenovirus E1B 19K tumor antigen cause degradation of chromosomal DNA, J. Virol, 52:410 (1984).PubMedGoogle Scholar
  4. 4.
    E. White, S.H. Blose, and B. Stillman, Nuclear envelope localization of an adenovirus tumor antigen maintains the integrity of cellular DNA, Mol Cell Biol, 4:2865 (1984).PubMedGoogle Scholar
  5. 5.
    T. Subramanian, M. Kuppuswamy, J. Gysbers, S. Mak, and G. Chinnadurai, 19-kDa tumor antigen coded by early region Elb of adenovirus 2 is required for efficient synthesis and for protection of viral DNA, J. Biol Chem., 259:11777 (1984).PubMedGoogle Scholar
  6. 6.
    E. White, R. Cipriani, P. Sabbatini, and A. Denton, The adenovirus E1B 19-Kilodalton protein overcomes the cytotoxicity of EIA proteins, J. Virol, 65:2968 (1991).PubMedGoogle Scholar
  7. 7.
    L.R. Gooding, L. Aquino, P.J. Duerksen-Hughes, D. Day, T.M. Horton, S. Yei, and W.S.M. Wold, The E1B-19K protein of group C adenoviruses prevents cytolysis by tumor necrosis factor of human cells but not mouse cells, J. Virol, 65:3083 (1991).PubMedGoogle Scholar
  8. 8.
    S. Hashimoto, A. Ishii, and S. Yonehara, The E1B oncogene of adenovirus confers cellular resistance to cytotoxicity of tumor necrosis factor and monoclonal anti-Fas antibody, Int. Immunol, 3:343 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    E. White, P. Sabbatini, M. Debbas, W.S.M. Wold, D.I. Kusher, and L. Gooding, The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor a, Mol Cell Biol, 12:2570 (1992).PubMedGoogle Scholar
  10. 10.
    E. White and B. Stillman, Expression of the adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins, J. Virol, 61:426 (1987).PubMedGoogle Scholar
  11. 11.
    E. White and L.R. Gooding, Regulation of apoptosis by human adenoviruses, in Apoptosis: The Molecular Basis for Cell Death II, (in press) (1993).Google Scholar
  12. 12.
    E. White, Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus, Proc. Soc. Exp. Biol Med., (in press) (1993).Google Scholar
  13. 13.
    E. Moran, E1A/T antigen/E7 and the cell cycle, Cur. Opin. Gen. Dev., 3:63 (1993).CrossRefGoogle Scholar
  14. 14.
    T. Shenk and J. Flint, Transcriptional and transforming activities of the adenovirus E1A proteins, Adv. Cancer Res., 57:47(1991).PubMedCrossRefGoogle Scholar
  15. 15.
    A.J. Berk, Adenovirus promoters and E1A transactivation, Annu. Rev. Genet., 20:5 (1986).CrossRefGoogle Scholar
  16. 16.
    N. Dyson and E. Harlow, Adenovirus E1A targets key regulators of cell proliferation, Cancer Surv., 12:161 (1992).PubMedGoogle Scholar
  17. 17.
    P. Whyte, K. Buchkovich, J.M. Horowitz, S.H. Friend, M. Raybuck, R.A. Weinbert, and E. Harlow, Associtation between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product, Nature (London), 334:124 (1988).CrossRefGoogle Scholar
  18. 18.
    R.A. Weinberg, Tumor suppressor genes, Science, 254:1138 (1992).CrossRefGoogle Scholar
  19. 19.
    J.R. Nevins, E2F: A link between the Rb tumor suppressor protein and viral oncoproteins, Science, 258:424(1992).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Rao, M. Debbas, P. Sabbatini, D. Hockenberry, S. Korsmeyer, and E. White, The adenovirus E1A proteins induce apoptosis which is inhibited by the E1B 19K and Bcl-2 proteins, Proc. Natl. Acad. Sci. USA, 89:7742 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    E. White and R. Cipriani, Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein, Mol. Cell. Biol., 10:120(1990).PubMedGoogle Scholar
  22. 22.
    Y. Tsujimoto, J. Gorham, J. Cossman, E. Jaffe, and C.M. Croce, The t(14;18) chromosome translocations involved in B cell neoplasms result from mistakes in VDJ joining, Science, 229:1390 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Bakhshi J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein, and S.J. Korsmeyer., Cloning the chromosomal break-point of the t(14:18) human lymphomas: cloustering around JH on Chromosome 14 and near a transcriptional unit on 18, Cell, 41:889 (1985).CrossRefGoogle Scholar
  24. 24.
    M.L. Cleary and J. Sklar, Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint cluster region near a transcriptionally active loucus on chromosome 18, Proc. Natl. Acad. Sci. USA, 82:7439 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    T.E. Allsopp, S. Wyatt, H.F. Paterson, and A.M. Davies, The proto-oncogene bcl-2 can selectively rescue neurotrophic factor-dependent neurons from apoptosis, Cell, 73:295 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Garcia, I. Martinou, Y. Tsujimoto, and J.-C. Martinou, Prevention of programmed cell death of sympathetic neurons by the bcl-2 proto-oncogene, Science, 258:302 (1992).PubMedCrossRefGoogle Scholar
  27. 27.
    G. Nunez, L. London, D. Hockenbery, J.P. McKearn, and S.J. Korsmeyer, Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hematopoietic cell lines, J. Immunol., 144:3602(1990).PubMedGoogle Scholar
  28. 28.
    D.L. Vaux, S. Cory, and T.M. Adams, Bcl-2 promotes the survival of haemopoietic cells and cooperates with c-myc to immortalize pre-b cells, Nature (London), 335:440 (1988).CrossRefGoogle Scholar
  29. 29.
    T.J. McDonnell and S.J. Korsmeyer, Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t(14:18), Nature (London), 349:254 (1991).CrossRefGoogle Scholar
  30. 30.
    T.J. McDonnell, N. Deane, F.M. Platt, G. Nunez, U. Jaeger, J.P. McKearn, and S.J. Korsmeyer, bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation, Cell, 57:79 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    G. Nunez, D. Hockenbery, T.J. McDonnell, C.M. Sorensen, and S.J. Korsmeyer, Bcl-2 maintains B cell memory, Nature (London), 353:71 (1991).CrossRefGoogle Scholar
  32. 32.
    P. Sarnow, Y.S. Ho, J. Williams, and A.J. Levine, Adenovirus E1b-58 kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells, Cell, 28:387(1982).PubMedCrossRefGoogle Scholar
  33. 33.
    P.R. Yew and A.J. Berk, Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein, Nature (London), 357:82 (1992).CrossRefGoogle Scholar
  34. 34.
    J. Martinez, I. Georgoff, and J.M.A.J. Levine, Cellular localization and cell cycle regulation by a temperature-sensitive p53 protein, Genes & Dev., 5:151 (1991).CrossRefGoogle Scholar
  35. 35.
    L. Diller, J. Kassel, C.E. Nelson, M.A. Gryka, G. Litwak, M. Geghardt, and B. Bressac, p53 functions as a cell cycle control protein in osteosarcomas, Mol. Cell. Biol, 10:5772 (1990).PubMedGoogle Scholar
  36. 36.
    E. Yonish-Rouach, D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature (London), 352:345 (1991).CrossRefGoogle Scholar
  37. 37.
    M. Debbas and E. White, Wild-type p53 mediates apoptosis by E1A which is inhibited by E1B, Genes Dev., 7:546 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Momand, G.P. Zambetti, D.C Olson, D. George, and A.J. Levine, The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, 69:1237 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    J.D. Oliner, K.W. Kinzler, P.S. Meltzer, D.L. George, and B. Vogelstein, Amplification of a gene encoding a p53-associated protein in human sarcomas, Nature (London), 358:80 (1992).CrossRefGoogle Scholar
  40. 40.
    J.D. Oliner, J. Pietenpol, S. Thiagalingam, J. Gyuris, K.W. Kinzler, and B. Vogelstein, Oncoprotein MDM2 conceals the activation domain of tumor suppressor p53, Nature (London), 362:857 (1993).CrossRefGoogle Scholar
  41. 41.
    M. Scheffner, B.A. Werness, J.M. Hulbregtse, A.J. Levine, and P.M. Howley, The E6 oncopretein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell, 63:1129 (1990).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Lowe and H.E. Ruley, Stabilization of the p53 tumor suppressor is induced by adenovirus-5 E1A and accompanies apoptosis, Genes Dev., 7:535 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    S.-K. Chiou, L. Rao, and E. White, Bcl-2 blocks p53-dependent apoptosis, (submitted).Google Scholar
  44. 44.
    M.D. Jacobson, J.F. Burne, M.P. King, T. Miyashita, J.C. Reed, and M.C. Raff, Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA, Nature (London), 361:365 (1993).CrossRefGoogle Scholar
  45. 45.
    S.K. Chiou, C.C. Tseng, L. Rao, P. Verwaerde, and E. White, Funtional complementation of the bcl-2 protooncogene for the adenovirus E1B 19K gene, (in preparation).Google Scholar
  46. 46.
    P. Monagan, D. Robertson, T.A. Amos, M.J. Dyer, D.Y. Mason, and M.F. Greaves, Ultrastructural localization of Bcl-2 protein, J. Histochem. Cytochem., 40:1819 (1992).CrossRefGoogle Scholar
  47. 47.
    D. Hockenbery, G. Nunez, C. Milliman, R.D. Schreiber, and S. Korsmeyer, Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death, Nature (London), 348:334 (1990).CrossRefGoogle Scholar
  48. 48.
    T. Hennet, G. Bertoni, C. Richter, and E. Peterhans, Expression of Bcl-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity, Can. Res., 53:1456 (1993).Google Scholar
  49. 49.
    M.Y. Mapara, R. Bargou, C. Zugek, H. Dohner, F. Ustaoglu, R. Jonker, P.H. Krammer, and B. Dorken, APO-1 mediated apoptosis or proliferation in human chronic B lymphocytic leukemia: correlation with bcl-2 oncogene expression, Eur. J. Immunol., 23:702 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    B. Vanhaesebroeck, J.C. Reed, D. DeValck, J. Grooten, T. Miyashita, S. Tanaka, R. Beyaert, F. VanRoy, and W. Fiers, Effect of bcl-2 proto-oncogene expression on cellular sensitivity to tumor necrosis factor-mediated cytotoxicity, Oncogene, 8:1075 (1993).PubMedGoogle Scholar
  51. 51.
    C.H. Herrmann and M.B. Mathews, The Adenovirus E1B 19-Kilodalton Protein Stimulates Gene Expression by Increasing DNA Levels, Mol. Cell. Biol., 9:5412 (1989).PubMedGoogle Scholar
  52. 52.
    N. Takemori, J.L. Riggs, and C. Aldrich, Genetic studies with tumorigenic adenoviruses. I. Isolation of cytocidal (cyt) mutants of adenovirus type 12, Virology, 36:575 (1968).PubMedCrossRefGoogle Scholar
  53. 53.
    Y. Tsujimoto and C.M. Croce, Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma, Proc. Natl. Acad. Sci. USA, 83:5214 (1986).PubMedCrossRefGoogle Scholar
  54. 54.
    M.L. Cleary, S.D. Smith, and J. Sklar, Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation, Cell, 47:19 (1986).PubMedCrossRefGoogle Scholar
  55. 55.
    M. Negrini, F. Silinui, C. Kozak, Y. Tsujimoto, and C.M. Croce, Molecular analysis of mbcl-2: structure and expression of the murine gene homologous to the human gene involved in follicular lymphoma, Cell, 49:455 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    D.L. Cazals-Hatem, D. Louie, S. Tanaka, and J.C. Reed, Molecular cloning and DNA sequence analysis of cDNA encoding chicken homologue of the Bcl-2 oncoprotein, Biochem. Biophys. Acta, 1132:109(1992).PubMedCrossRefGoogle Scholar
  57. 57.
    K.M. Kozopas, T. Yang, H.L. Buchan, P. Zhou, and R.W. Craig, MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL-2, Proc. Natl. Acad. Sci. USA, 90:3516 (1993).PubMedCrossRefGoogle Scholar
  58. 58.
    G.R. Pearson, J. Luka, L. Petti, J. Sample, M. Birkenbach, D. Braun, and E. Kieff, Identification of an Epstein-Barr virus early gene encoding a second component of the restricted early antigen complex, Virology, 160:151(1987).PubMedCrossRefGoogle Scholar
  59. 59.
    M.O. Hengartner, R.E. Ellis, and H.R. Hovitz, Caenorhabditis elegans gene ced-9 protects cells from programmed cell death, Nature (London), 356:494 (1992).CrossRefGoogle Scholar
  60. 60.
    L. Kaczmarek, B. Ferguson, M. Rosenberg, and R. Baserga, Induction of cellular DNA synthesis by purified adenovirus E1A proteins, Virology, 152:1 (1986).PubMedCrossRefGoogle Scholar
  61. 61.
    S. Stabel, P. Argos, and L. Philipson, The release of growth arrest by microinjection of adenovirus E1A DNA, EMBO J., 4:2329 (1985).PubMedGoogle Scholar
  62. 62.
    W. Maltzman and L. Czyzyk, UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells, Mol. Cell. Biol., 4:1689 (1984).PubMedGoogle Scholar
  63. 63.
    M.B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, and R.W. Craig, Participation of p53 protein in the cellular response to DNA damage, Cancer Res., 51:6304 (1991).PubMedGoogle Scholar
  64. 64.
    M.B. Kastan, Q. Zhan, W.S. El-Deiry, F. Carrier, T. Jacks, W.V. Walsh, B.S. Plunkett, B. Vogelstein, and A.J. Fornace, A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia, Cell, 13:587 (1992).CrossRefGoogle Scholar
  65. 65.
    S.J. Kuerbitz, B.S. Plunkett, W.V. Walsh, and M.B. Kastan, Wild-type p53 is a cell cycle checkpoint determinant following irradiation, Proc. Natl. Acad. Sci. USA, 89:7491 (1992).PubMedCrossRefGoogle Scholar
  66. 66.
    A.R. Clarke, C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie, Thymocyte apoptosis induced by p53-dependent and independent pathways, Nature (London), 362:849(1993).CrossRefGoogle Scholar
  67. 67.
    S.W. Lowe, E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks, p53 is required for radiation-induced apoptosis in mouse thymocytes, Nature (London), 362:847 (1993).CrossRefGoogle Scholar
  68. 68.
    A.H. Wyllie, K.A. Rose, R.C Morris, C.M. Steel, E. Foster, and D.A. Spandidos, Rodent fibroblast tumours expressing human myc and ras genes: growth, matastasis and endogenous oncogene expression, Brit. J. Cancer, 56:251 (1987).PubMedCrossRefGoogle Scholar
  69. 69.
    D.S. Askew, R.A. Ashmun, B.C. Simmons, and J.L. Cleveland, Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis, Oncogene, 6:1915(1991).PubMedGoogle Scholar
  70. 70.
    G.I. Evan, A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock, Induction of apoptosis in fibroblasts by c-myc protein, Cell, 69:119 (1992).PubMedCrossRefGoogle Scholar
  71. 71.
    Y. Shi, J.M. Glynn, L. Guilbert, T.G. Cotter, R.P. Bissonnette, and G.D. R., Role for c-myc in activation-induced apoptotic cell death in T cell hybridomas, Science, 257:212 (1992).PubMedCrossRefGoogle Scholar
  72. 72.
    R.J. Smeyne, M. Vendrell, M. Hayward, S.J. Baker, G.G. Maio, K. Schilling, L.M. Robertson, T. Curran, and J.I. Morgan, Continuous c-fos expression prededes programmed cell death in vivo, Nature (London), 363:166 (1993).CrossRefGoogle Scholar
  73. 73.
    R.P. Bissonnette, F. Echeverri, A. Mahboubi, and D. Green, Apoptotoc cell death induced by c-myc is inhibited by bcl-2. Nature (London), 359:552 (1992).CrossRefGoogle Scholar
  74. 74.
    A. Fanidi, E. A. Harrington, and G. Evan, Cooperative interaction between c-myc and bcl-2 protooncogenes. Nature (London), 359:554 (1992).CrossRefGoogle Scholar
  75. 75.
    J.-X. Lin and J. Vilcek, Tumor necrosis factor aand interleukin-1 cause a rapid and transient stimulation of c-fos and c-myc mRNA levels in human fibroblasts, J. Biol. Chem., 262:11908 (1987).PubMedGoogle Scholar
  76. 76.
    M.C Raff, Social controls on cell survival and cell death. Nature (London), 356:398 (1992).CrossRefGoogle Scholar
  77. 77.
    D.M. Hockenbery, M. Zutter, W. Hickey, M. Nahm, and S.J. Korsmeyer, Bcl-2 protein is topographically restricted in tissues characterized by apoptotic death, Proc. Natl. Acad. Sci. USA, 88:6961 (1991).PubMedCrossRefGoogle Scholar
  78. 78.
    C.L. Sentman, J.R. Shutter, D. Hockenbery, O. Kanagawa, and S.J. Korsmeyer, bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes, Cell, 67:879 (1991).PubMedCrossRefGoogle Scholar
  79. 79.
    A. Strasser, A.W. Harris, and S. Cory, bcl-2 transgene inhibits T cell death and perturbs thymic selfcensorship, Cell, 67:889 (1991).PubMedCrossRefGoogle Scholar
  80. 80.
    H. Land, L.F. Parada, and R.A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature (London), 304:596 (1983).CrossRefGoogle Scholar
  81. 81.
    H.E. Ruley, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature (London), 304:602 (1983)CrossRefGoogle Scholar
  82. 82.
    L.A. Donehower, M. Harvey, B.L. Slagle, M.J. McArthur, J. Montgomery C.A. J.S. Butel, and A. Bradley, Mice deficient for p53 are developmentally normal but suceptible to spontaneous tumors. Nature (London), 356:215 (1992).CrossRefGoogle Scholar
  83. 83.
    E.S. Alnemri, T.F. Fernandes, S. Haldar, C.M. Croce, and G. Litwack, Involvement of BCL-2 in glucocorticoid-induced apoptosis of human pre-B-leukemias, Cancer Res., 52:491 (1992).PubMedGoogle Scholar
  84. 84.
    G.P. Zambetti and A.J. Levine, A comparison of the biological activities of wild-type and mutant p53, FASEB J., (in press) (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Eileen White
    • 1
  • Lakshmi Rao
    • 1
  • Shiun-Kwei Chiou
    • 1
  • Ching-Chun Tseng
    • 1
  • Peter Sabbatini
    • 1
  • Michelle Gonzalez
    • 1
  • Philippe Verwaerde
    • 1
  1. 1.Center for Advanced Biotechnology and Medicine, Department of Biological SciencesRutgers UniversityPiscatawayUSA

Personalised recommendations