Skip to main content

Wild Type p53 Activity Contributes to Dependence on Hematopoietic Survival Factors

  • Chapter
Apoptosis

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 5))

Abstract

The p53 protein is the product of a tumor suppressor gene, whose inactivation is most probably involved in the development of many types of cancer (for recent reviews on p53 see 1–6). In most cases, tumor cells harbor point mutations in the p53 gene, resulting in the overproduction of mutant forms of the protein. Whereas the wild-type (wt) form of p53 can exhibit a variety of anti-proliferative and tumor-inhibitory activities, mutants of the types found in cancer cells are typically devoid of such activities. Hence, the principal outcome of such mutations is probably the inactivation of the tumor suppressor function of wt p53. In addition, at least certain mutations may also confer a distinct gain of function7, thereby possibly contributing a novel oncogenic activity to the affected cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levine, A. J., J. Momand, and C.A. Finlay. The p53 tumour suppressor gene. Nature 351: 453–456 (1991).

    Article  PubMed  CAS  Google Scholar 

  2. Hollstein, M., D. Sidransky, B. Vogelstein and C.C. Harris. p53 mutations in human cancers. Science 253: 49–53 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. Oren, M. p53 — the ultimate tumor suppressor gene? FASEB J. 6, 3169–3176 (1992).

    PubMed  CAS  Google Scholar 

  4. Vogelstein, B, and Kinzler, K.W. (1992). p53 function and dysfunction. Cell 70, 523–526.

    Article  PubMed  CAS  Google Scholar 

  5. Mercer, W.E. Cell cycle regulation and the p53 tumor suppressor protein. Critical Rev. Eukaryotic Gene Expression, 2, 251–263 (1992).

    CAS  Google Scholar 

  6. Prives, C. and J.J. Manfredi. The p53 tumor suppressor protein: meeting review. Genes Dev. 7, 529–534 (1993).

    Article  PubMed  CAS  Google Scholar 

  7. Michalovitz, D., O. Halevy, and M. Oren. p53 mutations: gains or losses? J. Cell. Biochem. 45:22–29 (1991).

    Article  PubMed  CAS  Google Scholar 

  8. Seto, E., Usheva, A., Zambetti, G.P., Momand, J., Horikoshi, N., Weinmann, R., Levine, A.J., and Shenk, T. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA, 849, 12028–12032 (1992).

    Article  Google Scholar 

  9. Ragimov, N., Krauskopf, A., Oren, M., and Aloni, Y. Wild type p53 can repress transcription initiation in vitro. Oncogene 8, 1183–1193 (1993).

    PubMed  CAS  Google Scholar 

  10. Mack, D.H., J. Vartikar, J.M. Pipas, and L.A. Laimins. Specific repression of TATA-meidated but not initiator-mediated transcription by wt p53. Nature 363, 281–283 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. Agoff, S.N., Hou, J., Linzer, D.I.H., and Wu, B. Regulation of the human hsp70 promoter by p53. Science, 259, 84–87 (1993).

    Article  PubMed  CAS  Google Scholar 

  12. Truant, R., Xiao, H., Ingles, C.J., and Greenblatt, J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268, 2284–2287 (1993).

    PubMed  CAS  Google Scholar 

  13. Tomey, J.D., and F.O. Cope (eds). Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, Plainview, NY (1991).

    Google Scholar 

  14. Kuerbitz, S.J., B.S. Plunkett, V.W. Walsh, and M.B. Kastan. Wild type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89: 7491–7495 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Lane, D.P. p53, guardian of the genome. Nature 358: 15–16 (1992).

    Article  PubMed  CAS  Google Scholar 

  16. Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B., and Fornace, A.J. Cell 71, 587–597 (1992).

    Article  PubMed  CAS  Google Scholar 

  17. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. Michalovitz, D., O. Halevy, and M. Oren. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Ryan, J.J., R. Danish, C.A. Gottlieb, and M.F. Clarke. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol. Cell. Biol. 13, 711–719 (1993).

    PubMed  CAS  Google Scholar 

  20. Johnson, P., S. Chung, and S. Benchimol. Growth suppression of Friend virus-transformed erythroleukemia cells by p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol. Cell. Biol. 13, 1456–1463 (1993).

    PubMed  CAS  Google Scholar 

  21. Shaw, P., R. Bovey, S. Tardy, R. Sahli, B. Sordat, and BJ. Costa. Induction of apoptosis by wild type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89:4495–4499 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).

    Article  PubMed  CAS  Google Scholar 

  24. Debbas, M., and E. White. Wild type p53 mediates apoptosis by EIA, which is inhibited by EIB. Genes Dev. 7, 546–554 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Lowe, S.W., and H.E. Ruley. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 EIA and accompanies apoptosis. Genes Dev. 7, 535–545 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J.J., May, P., and Oren, M. p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 13, 1415–1423 (1993).

    PubMed  CAS  Google Scholar 

  27. Askew D.S., R.A. Ashmun, B.C. Simmons, and J.L. Cleveland. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922(1991).

    PubMed  CAS  Google Scholar 

  28. Evan, G.E., A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).

    Article  PubMed  CAS  Google Scholar 

  29. Sachs, L. The control of growth and differentiation in normal and leukemic blood cells. Cancer 65: 2196–2206(1990).

    Article  PubMed  CAS  Google Scholar 

  30. Resnitzky D., N. Tiefenbrun, H. Berissi, and A. Kimchi. Interferons and interleukin 6 suppress phosphoryrlation of the retinoblastoma protein in growth-sensitive hematopoietic cells. Proc. Natl. Acad. Sci. USA 89: 402–406 (1992).

    Article  PubMed  CAS  Google Scholar 

  31. Shaulian, E., Zauberman, A., Ginsberg, D., and Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 (1992).

    PubMed  CAS  Google Scholar 

  32. Lotem J., and L. Sachs. Regulation by bcl-2, c-myc and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells. Cell Growth Diff. 4, 41–47 (1993).

    PubMed  CAS  Google Scholar 

  33. Donehower, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery, C.A., Butel, J.S., and Bradley, A. p53-deficient mice are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gottlieb, E., Haffner, R., Yonish-Rouach, E., von Ruden, T., Wagner, E., Oren, M. (1994). Wild Type p53 Activity Contributes to Dependence on Hematopoietic Survival Factors. In: Mihich, E., Schimke, R.T. (eds) Apoptosis. Pezcoller Foundation Symposia, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9217-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9217-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9219-5

  • Online ISBN: 978-1-4757-9217-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics