Apoptosis pp 179-200 | Cite as

Nuclear Receptors and Thymocyte Apoptosis: Shaping the Immune Repertoire

  • Melanie S. Vacchio
  • Yili Yang
  • Jonathan D. Ashwell
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 5)


Programmed cell death (PCD) plays a critical role in the generation of the antigen-specific immune repertoire. Both the T cell receptor (TCR) ligand-binding chains and immunoglobulin are generated randomly from the rearrangement of independent gene segments. While this process ensures the diversity of the immune cell receptor repertoire, it also results in the generation of T cells that express receptors that recognize self antigens in the context of self major histocompatibility complex (MHC)-encoded molecules with high affinity. The most effective way to deal with these potentially autoreactive cells is to eliminate them, a process referred to as “negative selection”. Deletion of potentially autoreactive T cells usually occurs in the thymus. Use of anti-TCR antibodies or bacterial superantigens (which mimic receptor occupancy by a natural ligand) during fetal thymic organ cultures results in PCD of immature CD4+ CD8+ thymocytes1,2, as does exposure of thymocytes from TCR-transgenic mice to the appropriate antigen3,4. The dying thymocytes manifest the classic apoptotic phenotype: membrane blebbing, cytoplasmic condensation, and chromatin clumping, accompanied by endonuclease-mediated cleavage of internucleosomal DNA1. Injection of cyclosporin A, which blocks activation-induced T cell hybridoma and thymocyte apoptosis5,6, prevents the deletion of a population of autoreactive T cells when the thymus regenerates after sublethal irradiation7,8.


Retinoic Acid Negative Selection Thymic Epithelial Cell Thymocyte Apoptosis Steroid Receptor Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Smith, G.T. Williams, R. Kingston, E.J. Jenkins, and J.J.T. Owen, Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures, Nature, 337:181 (1989).PubMedCrossRefGoogle Scholar
  2. 2.
    E.J. Jenkinson, R. Kingston, C.A. Smith, G.T. Williams, and J.J. Owen, Antigen-induced apoptosis in developing T cells: a mechanism for negative selection of the T cell receptor repertoire, Eur. J. Immunol., 19:2175 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    K.M. Murphy, A.B. Heimberger, and D.Y. Loh, Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo, Science, 250:1720 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    W. Swat, L. Ignatowicz, H. von Boehmer, and P. Kisielow, Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells, Nature, 351:150 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Mercep, P.D. Noguchi, and J.D. Ashwell, The cell cycle block and lysis of an activated T cell hybridoma are distinct processes with different Ca2+ requirements and sensitivity to cyclosporine A, J. Immunol., 142:4085 (1989).PubMedGoogle Scholar
  6. 6.
    Y. Shi, B.M. Sahai, and D.R. Green, Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes, Nature, 339:625 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    M.K. Jenkins, R.H. Schwartz, and D.M. Pardoll, Effects of cyclosporin A on T cell development and clonal deletion, Science, 241:1655 (1988).PubMedCrossRefGoogle Scholar
  8. 8.
    E.K. Gao, D. Lo, R. Cheney, O. Kanagawa, and J. Sprent, Abnormal differentiation of thymocytes in mice treated with cyclosporine A, Nature, 336:176 (1988).PubMedCrossRefGoogle Scholar
  9. 9.
    E.A. Robey, F. Ramsdell, D. Kioussis, W. Sha, D. Loh, R. Axel, and B.J. Fowlkes, The level of CD8 expression can determine the outcome of thymic selection, Cell, 69:1089 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    A.H. Wyllie, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature, 284:555 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    J.J. Cohen, and R.C. Duke, Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol, 132:38 (1984).PubMedGoogle Scholar
  12. 12.
    G.E. Roelants, J. London, K.S. Mayor-Whithey, and B. Serrano, Peanut agglutinin. II. Characterization of the Thy-1, Tla and Ig phenotype of peanut agglutinin-positive cells in adult, embryonic and nude mice using double immunofluorescence, Eur. J. Immunol, 9:132 (1979).Google Scholar
  13. 13.
    P.D. Boyer, and E.V. Rothenberg, IL-2 receptor inducibility is blocked in cortical-type thymocytes, J. Immunol, 140:2886 (1988).PubMedGoogle Scholar
  14. 14.
    H. Selye, Thymus and adrenals in the response of the organism to injuries and intoxication, Brit. J. Exp. Path., 17:234 (1936).Google Scholar
  15. 15.
    T.F. Dougherty, Effect of hormones on lymphatic tissue, Phys. Rev., 32:379 (1952).Google Scholar
  16. 16.
    H.L. Jaffe, The influence of the suprarenal gland on the thymus. III. Stimulation of the growth of the thymus gland following double suprarenalectomy in young rats, J. Exp. Med., 40:753 (1924).PubMedCrossRefGoogle Scholar
  17. 17.
    C.M. Zacharchuk, M. Mercep, P. Chakraborti, S.S. Simons, Jr., and J.D. Ashwell, Programmed T lymphocyte death: cell activation- and steroid-induced pathways are mutually antagonistic, J. Immunol, 145:4037 (1990).PubMedGoogle Scholar
  18. 18.
    C.M. Zacharchuk, M. Mercep, and J.D. Ashwell, Thymocyte activation and death: a mechanism for molding the T cell repertoire, Antigen and clone-specific immunoregulation, 636:52 (1991).Google Scholar
  19. 19.
    M. Iwata, S. Hanaoka, and K. Sato, Rescue of thymocytes and T cell hybridomas from glucocorticoid-induced apoptosis by stimulation via the T cell receptor/CD3 complex: a possible in vitro model for positive selection of the T cell repertoire, Eur. J. Immunol, 21:643 (1991).PubMedCrossRefGoogle Scholar
  20. 20.
    S.J. Henning, Plasma concentrations of total and free corticosterone during development in the rat, Am. J. Physiol., 235:E451 (1978).Google Scholar
  21. 21.
    L. Savu, H. Zouaghi, and E.A. Nunez, Serum inflammatory responses of transcortin binding activities and of total and free corticosterone and progesterone levels in developing rats: a kinetic approach, Int. J. Tiss. Reac., 7:443 (1985).Google Scholar
  22. 22.
    V. Geenen, J.J. Legros, P. Franchimont, M. Baudrihaye, M.P. Defresne, and J. Boniver, The neuroendocrine thymus: coexistence of oxytocin and neurophysin in the human thymus, Science, 232:508 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    V.K.M. Han, A.J. D’Ercole, and P.K. Lund, Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus, Science, 286:193 (1987).CrossRefGoogle Scholar
  24. 24.
    V.K.M. Han, D.J. Hill, A.J. Strain, A.C. Towie, J.M. Lauder, L.E. Underwood, and J. D’Ercole, Identification of somatomedin/insulin-like growth factor immunoreactive cells in the human fetus, Pediatr. Res., 22:245 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    C. LeGoascogne, P. Robel, M. Gouezou, N. Sananes, E.E. Baulieu, and M. Waterman, Neurosteroids: cytochrome P-450scc in rat brain, Science, 237:1212 (1987).CrossRefGoogle Scholar
  26. 26.
    I. Jung-Testas, Z.Y. Hu, E.E. Baulieu, and P. Robel, Neurosteroids: biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells, Endocrinology, 125:2083 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    F. Mintami, T. Shimizu, R. Ueno, Y. Ishimura, S. Izumi, N. Komatsu, and K. Watanabe, Cytochrome P450–11β and P450scc in adrenal cortex: zonal distribution and intramitochondrial localization by the horseradish peroxidase-labeled antibody method, J. Histochem. Cytochem., 30:1066 (1982).CrossRefGoogle Scholar
  28. 28.
    H.J. Geuze, J.W. Slot, K. Yanagibashi, J.A. McCracken, A.L. Schwartz, and P.F. Hall, Immunogold cytochemistry of cytochromes P-450 in porcine adrenal cortex, Histochem., 86:551 (1987).CrossRefGoogle Scholar
  29. 29.
    A.H. Payne, Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17α-hydroxylase/C 17–20 lyase in Leydig cells, Biol. Reprod., 42:399 (1990).PubMedCrossRefGoogle Scholar
  30. 30.
    I. Hanukoglu, R. Feuchtwanger, and A. Hanukoglu, Mechanism of ACTH and cAMP induction of mitochondrial cytochrome P450 system enzymes in adrenal cortex cells, J. Biol. Chem., 265:20602 (1990).PubMedGoogle Scholar
  31. 31.
    H. Wekerle, and U.-P. Ketelsen, Thymic nurse cells—la-bearing epithelium involved in T-lymphocyte differentiation?, Nature, 283:402 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    H. Wekerle, U.-P. Ketelsen, and M. Ernst, Thymic nurse cells. Lymphoepithelial cell complexes in murine thymuses: morphological and serological characterization, J. Exp. Med, 151:925 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    R.T. Kubo, W. Born, J.W. Kappler, P. Marrack, and M. Pigeon, Characterization of a monoclonal antibody which detects all murine α/β T cell receptors, J. Immunol., 142:2736 (1989).PubMedGoogle Scholar
  34. 34.
    C.W. Ragsdale, Jr., and J.P. Brockes, Retinoids and their targets in vertebrate development, Curr. Opin. Cell Biol., 3:928 (1991).PubMedCrossRefGoogle Scholar
  35. 35.
    B.L.M. Hogan, C. Thaller, and G. Eichele, Evidence that Hensen’s node is a site of retinoic acid synthesis, Nature, 359:237 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    A.C. Ross, Vitamin A status: relationship to immunity and the antibody response, Proc. Soc. Exp. Biol. Med, 200:303 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Krust, P.H. Kastner, M. Petkovich, A. Zelent, and P. Chambon, A third human retinoic acid receptor, hRARy, Proc. Natl. Acad. Sci. USA, 86:5310 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    D.J. Mangelsdorf, E.S. Ong, JA. Dyck, and R.M. Evans, Nuclear receptor that identifies a novel retinoic acid response pathway, Nature, 345:224 (1990).PubMedCrossRefGoogle Scholar
  39. 39.
    D. Mangelsdorf, U. Borgmeyer, R.A. Heyman, J.Y. Zhou, E.S. Ong, A.E. Oro, A. Kakizuka, and R.M. Evans, Characterization of three RXR genes that mediate the action of 9-cis retinoic acid, Genes Dev., 6:329 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    A.A. Levin, L.J. Sturzenbecker, S. Kazmer, T. Bosalkowski, C. Huselton, G. Allenby, G. Speck, C.I. Kratzeisen, M. Rosenberger, A. Lovey, and J. Grippo, 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRa, Nature, 355:359 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    R.A Heyman, D.J. Mangelsdorf, J.A. Dyck, R.B. Stein, G. Eichele, M. Evans, and C. Thaller, 9-Cis retinoic acid is a high affinity ligand for the retinoid X receptor, Cell, 8:397 (1992).CrossRefGoogle Scholar
  42. 42.
    X.-K. Zhang, J. Lehmann, B. Hoffmann, M.I. Dawson, J. Cameron, G. Graupner, T. Hermann, P. Tran, and M. Pfahl, Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid, Nature, 358:587 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    Y. Yang, M.S. Vacchio, and J.D. Ashwell, 9-Cis retinoic acid inhibits activation- driven T cell apoptosis: implications for retinoid X receptor involvement in thymocyte development, Proc. Natl. Acad. Sci. USA, in press(Google Scholar
  44. 44.
    J. Kappler, J. White, D. Wegmann, E. Mustain, and P. Marrack, Antigen presentation by Ia+ B cell hybridomas to H-2-restricted T cell hybridomas, Proc. Natl. Acad. Sci. USA, 79:3604 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    K.P. West, Jr., G.R. Howard, and A. Sommer, Vitamin A and infection: public health implications, Annu. Rev. Nutr., 9:63 (1989).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Inomata, and T. Nakamura, Influence of adrenalectomy on the development of the neonatal thymus in the rat, Biol. Neonate, 55:238 (1989).PubMedCrossRefGoogle Scholar
  47. 47.
    E.M. Smith, W.J. Meyer, and J.E. Blalock, Virus-induced corticosterone in hypophysectomized mice: a possible lymphoid adrenal axis, Science, 218:1311 (1982).PubMedCrossRefGoogle Scholar
  48. 48.
    E. Batanero, F.E. De Leeuw, G.E Jansen, D.F. Van Wichen, J. Huber, and H.J. Shuurman, The neural and neuro-endocrine component of the human thymus, Brain Behav. Immunol, 6:249 (1992).CrossRefGoogle Scholar
  49. 49.
    J. Sprent, D. Lo, E.-K. Gao, and Y. Ron, T cell selection in the thymus, Immunol. Rev., 101:172 (1988).CrossRefGoogle Scholar
  50. 50.
    F. Ramsdell, T. Lantz, and B.J. Fowlkes, A nondeletional mechanism of thymic self tolerance, Science, 246:1038 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    B.A. Kyewski, Thymic nurse cells: possible sites of T-cell selection, Immunol. Today, 7:374 (1986).CrossRefGoogle Scholar
  52. 52.
    M. A. Smith, D.R. Parkinson, B.D. Cheson, and M. A. Friedman, Retinoids in cancer therapy, J. Clin. Oncol, 10:839 (1992).PubMedGoogle Scholar
  53. 53.
    E. Seifter, G. Rettura, and S.M. Levenson, Decreased resistance of C3H/HeHa mice to C3HBA tumor transplants: increased resistance due to supplemental vitamin A, J. Natl. Cancer Inst., 67:467 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Melanie S. Vacchio
    • 1
  • Yili Yang
    • 1
  • Jonathan D. Ashwell
    • 1
  1. 1.Laboratory of Immune Cell Biology, Biological Response Modifiers ProgramNational Institutes of HealthBethesdaUSA

Personalised recommendations