Skip to main content

Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis Elegans

  • Chapter
Apoptosis

Part of the book series: Pezcoller Foundation Symposia ((PFSO,volume 5))

Abstract

Naturally-occurring or “programmed” cell death appears to be a universal aspect of animal development (e.g., Ref. 1). For example, massive cell death occurs during the development of the mammalian fetus, particularly in the fetal brain; in areas of the developing vertebrate nervous system as many as 85% of the developing neurons die. Similarly, about 95% of developing thymocytes die without ever leaving the thymus. Why such cell deaths occur and how they are regulated are fundamental problems in developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ellis, R. E., Yuan, J., and Horvitz, H. R., 1991a. Mechanisms and functions of cell death. Ann. Rev. Cell Biol. 7: 663–698.

    Article  PubMed  CAS  Google Scholar 

  2. Horvitz, H. R. and Chalfie, M., 1991. Implications of nematode neuronal cell death for human neurological disorders. In Neurodegenerative Disorders: Mechanisms and Prospects for Therapy , D. Price, H. Thoenen and A. Aguayo, John Wiley & Sons, Chichester.

    Google Scholar 

  3. Horvitz, H. R. and Sternberg, P., 1991. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans vulva. Nature 351: 535–541.

    Article  PubMed  CAS  Google Scholar 

  4. Sternberg, P. and Horvitz, H. R., 1991. Signal transduction during C. elegans vulval induction. TIG 7: 366–371.

    PubMed  CAS  Google Scholar 

  5. Clark, S., Stern, M. and Horvitz, H. R., 1992. C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344.

    Article  PubMed  CAS  Google Scholar 

  6. Hill, R. and Sternberg, P., 1992. The gene iin-3 encodes an inductive signal for vulval development in C elegans. Nature 358: 470–476.

    Article  PubMed  CAS  Google Scholar 

  7. Han, M., Golden, A., Han, Y. and Sternberg, P., 1993. C. elegans lin-45 raf gene participates in let-60 ras -stimulated vulval differentiation. Nature 363: 133–140.

    Article  PubMed  CAS  Google Scholar 

  8. Sulston, J. and Horvitz, H. R., 1977. Post-embryonic cell lineages of the nematode Caenorhabditis elegans. Develop. Biol. 56: 110–156.

    Article  PubMed  CAS  Google Scholar 

  9. Kimble, J. and Hirsh, D., 1979. The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Devel. Biol. 70: 396–417.

    Article  CAS  Google Scholar 

  10. Sulston, J., E. Schierenberg, J. White, and Thomson, N., 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Develop. Biol. 100:64–119.

    Article  PubMed  CAS  Google Scholar 

  11. Robertson, A. and Thomson, N., 1982. Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae. J. Embryol. exp. Morph. 67: 89–100.

    Google Scholar 

  12. Ellis, R. E., Jacobson, D. M., and Horvitz, H. R., 1991b. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129: 79–94.

    PubMed  CAS  Google Scholar 

  13. Ellis, H. and Horvitz, H. R., 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829.

    Article  PubMed  CAS  Google Scholar 

  14. Yuan, J. and Horvitz, H. R., 1990. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Develop. Biol. 138: 33–41.

    Article  PubMed  CAS  Google Scholar 

  15. Yuan, J. and Horvitz, H. R., 1992. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309–320.

    PubMed  CAS  Google Scholar 

  16. Hengartner, M. O., Ellis, R. E., and Horvitz, H. R., 1992. C. elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499.

    Article  PubMed  CAS  Google Scholar 

  17. Vaux, D., Cory, S., Adams, J., 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335: 440–442.

    Article  PubMed  CAS  Google Scholar 

  18. Nunez, G., London, L., Hockenbery, D., Alexander, M., McKearn, J. P., and Korsmeyer, S. J., 1990. Deregulated Bcl-2 gene expression selectively prolongs survival of growth factor-deprived hemopoietic cell lines. J. Immunol. 144: 3602–3610.

    PubMed  CAS  Google Scholar 

  19. Korsmeyer, S. J., 1992. Bcl-2: an antidote to programmed cell death. Cancer Surv. 15:105–118.

    PubMed  CAS  Google Scholar 

  20. Vaux, D., Weissman, I., and Kim, S. K., 1992. Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science 258: 1955–1957.

    Article  PubMed  CAS  Google Scholar 

  21. Hedgecock, E., J. Sulston and Thomson, N., 1983. Mutations affecting programmed cell death in the nematode Caenorhabditis elegans. Science 220: 1277–1279.

    Article  PubMed  CAS  Google Scholar 

  22. Sulston, J., 1976. Post-embryonic development in the ventral nerve cord of Caenorhabditis elegans. Philos. Trans. R. Soc. London Ser. B 275: 287–298.

    Article  CAS  Google Scholar 

  23. Hevelone, J., and Hartman, P., 1988. An endonuclease from Caenorhabditis elegans: partial purification and characterization. Biochem. Genet. 26: 447–461.

    Article  PubMed  CAS  Google Scholar 

  24. Wyllie, A., 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556.

    Article  PubMed  CAS  Google Scholar 

  25. Cohen, J. and Duke, R., 1984. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J. Immunol. 132: 38–42.

    PubMed  CAS  Google Scholar 

  26. Wyllie, A., Morris, R., Smith A., and Dunlop, D., 1984. Chromatin cleavage in apoptosis. association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142: 67–77.

    Article  PubMed  CAS  Google Scholar 

  27. Ellis, R. E. and Horvitz, H. R., 1991. Two C elegans genes control the programmed deaths of specific cells in the pharynx. Development 112: 591–603.

    PubMed  CAS  Google Scholar 

  28. Trent, C., Tsung, N. and Horvitz, H. R., 1983. Egg-laying defective mutants of the nematode Caenorhabditis elegans. Genetics 104: 619–647.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Horvitz, H.R. (1994). Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis Elegans . In: Mihich, E., Schimke, R.T. (eds) Apoptosis. Pezcoller Foundation Symposia, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9217-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9217-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9219-5

  • Online ISBN: 978-1-4757-9217-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics