Advertisement

Commercialization of Nucleic Acid Probe Technology: Current Status

  • James H. Godsey
  • Kurt M. Vanden Brink
  • Luke J. DiMichele
  • Laura A. Beninsig
  • W. Richard Peterson
  • David G. Sherman
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 349)

Abstract

Potential Application of Probes. There are four key diagnostic applications for Nucleic Acid (N.A.) Probe Assays — they are infectious disease diagnosis, genetic disease screening, cancer diagnosis and predisposition to disease screening. Furthermore, identity testing is a non-diagnostic application of N.A. probe assays which includes two specific categories: parenteral identity testing and forensic testing.

Keywords

Capture Probe Antibiotic Resistance Gene Probe Assay Enzyme Conjugate Nucleic Acid Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.L. Archer, E. Pennell, Detection of methicillin resistance in staphylococci by using a DNA probe, Antimicrob. Agents Chemother. 34(9): 1720–1724 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    F. Barany, The ligase chain reaction (LCR) in a PCR world, PCR Methods and Applications 1:5–16 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    C.E. Bush, L.J. DiMichele, W.R. Peterson, D.G. Sherman, and J.H. Godsey, Solid-phase time-resolved fluorescence detection of HIV PCR amplification product, Analytical Biochemistry. 202 (1): 146–151 (1992).PubMedCrossRefGoogle Scholar
  4. 4.
    C.E. Bush, K.M. Vanden Brink, D.G. Sherman, W.R. Peterson, L.A. Beninsig, and J.H. Godsey, Detection of Escherichia coli r RNA using target amplification and time-resolved fluorescence detection, Molecular and Cellular Probes. 5:1064–1079 (1991).CrossRefGoogle Scholar
  5. 5.
    C.E. Bush, R.M. Donovan, W.R. Peterson, M.B. Jennings, V. Bolton, D.G. Sherman, K.M. Vanden Brink, L.A. Beninsig, J.H. Godsey, Detection of HIV-1 RNA in plasma from high risk pediatric patients using the self-sustained sequence replication reaction, J. Clin. Microbiol 30(2):281–286 (1992).PubMedGoogle Scholar
  6. 6.
    P. Coll, K. Phillips, F.C Tenover, Evaluation of a rapid method of extracting DNA from stool samples for use in hybridization assays, J. Clin. Microbiol. 27(10):2245–2248 (1989).PubMedGoogle Scholar
  7. 7.
    J. DeLey, Intra and Intergeneric Similarities of the Ribosomal RNA Cistrons of Acetobacter and Gluonobacter, Int. J. System. Bact. 30 (l):7–27 (1980).Google Scholar
  8. 8.
    J.C. Guatelli, K.M. Whitfield, D.Y. Kwoh, K.J. Barringer, D.D. Richman, and T.R. Gingeras, Isothermal In Vitro Amplification of Nucleic Acids by a Multienzyme Reaction Modeled After Retroviral Replication, Proc. Natl. Acad. Sci. 87:1874–1878 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    S. Huovinen, M.L. Klossner, M.L. Katila, P. Houvinen, Plasmid-Mediated Beta-Lactamases among aminoglycoside resitant gram-negative bacilli, Scand. J Infect. Dis. 21 (3):303–309 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    G.A. Jacoby, M.J. Blaser, P. Santanam, H. Hachler, F.H. Kayser, R.S. Hare, G.H. Miller, Appearance of Amikacin and Tobramycin Resistance Due to 4’-Aminoglycoside Nucleotidyltransferase [ANT(4’)-II] in Gram-Negative Pathogens, Antimicrob. Agents Chemother. 34(12):2381–2386 (1990).PubMedCrossRefGoogle Scholar
  11. 11.
    D.Y. Kwoh, G.R. Davis, K.M. Whitfield, H.L. Chappelle, L. DiMichele, and T.R. Gingeras, Transciption-Based Amplification System and Detection of Amplified Human Immunodeficiency Cirus Type 1 with a Bead-Based Sandwich Hybridization Format, Proc. Natl. Acad. Sci. 86:1171–1177 (1989).CrossRefGoogle Scholar
  12. 12.
    P.M. Lazardi, C.E. Guerra, H. Lomeli, I. Tussie-Luna, F.R. Kramer, Exponential Amplification of Recombinant-RNA Hybridization Probes, Biotechnology. 6:1197–1202 (1989).Google Scholar
  13. 13.
    R. Lewis, Innovative Alternatives to PCR Technology are Proliferating, The Scientist Jan. 21:23–24 (1991).Google Scholar
  14. 14.
    M.C Longo, M.S. Rerninger, and Hartley, Use of Uracil DNA Glycosylase to Control Carry-over Contamination in Polymerase Chain Reactions, Gene 93:125–128(1990).PubMedCrossRefGoogle Scholar
  15. 15.
    K.B. Mullis, and F.A. Faloona, Specific Synthesis of DNA In Vitro Via a Polymerase-Catalyzed Chain Reaction, Methods Enzymol. 155:335–350 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Ounissi, E. Derlot, C. Carlier, P. Courvalin, Gene Homogeneity for Aminoglycoside-Modifying Enzymes in Gram-Positive Cocci, Antimicrob. Agents Chemother. 34(11):2164–2168 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    R. Sanchez-Pescador, M.S. Stempien, and M.S. Urdea, Rapid Chemiluminescent Nucleic Acid Assays for Detection of TEM-1 Beta-Lactamase-Mediated Penicillin Resistance in Neisseria gonorrhoeae and Other Bacteria, J. Clin. Microbiol. 26:1934–1938 (1988).PubMedGoogle Scholar
  18. 18.
    F.C. Tenover, K.L. Phillips, T. Gilbert, P. Lockhart, P.J. O’Hara, J.J. Plorde, Development of a DNA Probe from the Deoxyribonucleotide Sequence of a 3-N-Aminoglycoside Acetyltransferase [AAC(3)-1] Resistance Gene, Antimicrob. Agents Chemother. 33(4):551–559 (1989).PubMedCrossRefGoogle Scholar
  19. 19.
    M.S. Urdea, J.A. Running, T. Horn, J. Clyne, L. Ku, and B.D. Warner, A Novel Method for the Rapid Detection of Specific Nucleotide Sequences in Crude Biological Samples Without Blotting or Radioactivity: Application to the Analysis of Hepatitis B Virus in Human Serum, Gene 61:253–264 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    M.S. Urdea, B.D. Warner, J.A. Running M. Stempien, J. Clyne, and T. Horn, A Comparison of Non-Radioisotopic Hybridization Assay Methods Using Fluorescent, Chemiluminescent and Enzyme-labeled Synthetic Oligodeoxyrobonucleotide Probes, Nucleic Acid Res. 16:4937–4956(1988).PubMedCrossRefGoogle Scholar
  21. 21.
    I. Wieder, Method and Apparatus for Improved Analytical Fluorescent Spectroscopy, U.S. Patent 4,058,732 (November 15, 1977).Google Scholar
  22. 22.
    D.Y. Wu, and R.B. Wallace, The Ligation Amplification Reaction (LAR)-Amplification of Specific DNA Sequences Using Sequential Rounds of Template-Dependent Ligation, Genomics 4:560–569 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • James H. Godsey
    • 1
  • Kurt M. Vanden Brink
    • 1
  • Luke J. DiMichele
    • 1
  • Laura A. Beninsig
    • 1
  • W. Richard Peterson
  • David G. Sherman
    • 1
  1. 1.Microscan DivisionBaxter Diagnostics, Inc.West SacramentoUSA

Personalised recommendations