Glycopeptide Resistance in Gram-Positive Pathogens

  • Henry S. Fraimow
  • David M. Shlaes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)


The rapid emergence of vancomycin-resistant enterococci as significant nosocomial pathogens during the 1990’s has dramatically influenced our awareness of the threat posed by drug resistant microorganisms. Vancomycin was first introduced in the 1960’s, but it’s use was initially limited due to concerns regarding toxicity until the emergence of methicillin resistant strains of staphylococci during the 1980’s. By the late 1980’s, vancomycin was frequently the only reliable therapeutic alternative for nosocomial staphylococcal infections, and both appropriate and inappropriate usage mushroomed. At Thomas Jefferson University Hospital in Philadelphia, annual parenteral vancomycin usage increased from 6 kg/year in 1986 to over 20 kg/year in 1990. Although a number of unusual organisms such as Leuconostoc, Pediococcus and Lactobacillus spp. have long been known to be resistant to vancomycin, these have primarily been laboratory curiosities and have never posed a major clinical problem. However, the appearance of acquired vancomycin resistance in the clinically important pathogen Enterococcus was not anticipated.


Leuconostoc Mesenteroides Vancomycin Resistant Enterococcus Vancomycin Resistance Glycopeptide Antibiotic Enterococcal Isolate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.H.C. Uttley, C.H. Collins, J. Naidoo, and R.C. George. Vancomycin resistant enterococci (letter). Lancet. 1988; 1: 57–8.PubMedCrossRefGoogle Scholar
  2. 2.
    R. Leclerq, E. Derlot, J. Duval, and P. Courvalin. Plasmid mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J Med. 1988; 319: 157–61.CrossRefGoogle Scholar
  3. 3.
    A.P. Johnson, A.H. Uttley, N. Woodford, and R.C. George. Resistance to vancomycin and teicoplanin: an emerging clinical problem. Clin. Microb. Rev. 1990; 3: 280–91.Google Scholar
  4. 4.
    CDC. Nosocomial enterococci; resistant to vancomycin–United States, 1989–1993. MMWR. 1993; 42: 597–9.Google Scholar
  5. 5.
    R. Nagarajan. Structure-activity relationships of vancomycin type glycopeptide antibiotics. J. Antibiot. 1993; 46: 1181–95.PubMedCrossRefGoogle Scholar
  6. 6.
    P.E. Reynolds. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 1989; 8: 943–50.PubMedCrossRefGoogle Scholar
  7. 7.
    D.M. Shlaes, L. Etter, and L. Guttman. Synergistic killing of vancomycin-resistant enterococci of classes A, B and C by combinations of vancomycin, penicillin and gentamicin. Antimicrob. Agents Chemother. 1991; 35: 776–9.PubMedCrossRefGoogle Scholar
  8. 8.
    M. Arthur and P. Courvalin. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 1993; 37: 1563–71.PubMedCrossRefGoogle Scholar
  9. 9.
    D.M. Shlaes, A. Bouvet, C. Devine, et al. Inducible, transferable resistance to vancomycin in Enterocococcus faecalis A256. Antimicrob. Agents Chemother. 1989; 33: 198–203.PubMedCrossRefGoogle Scholar
  10. 10.
    R. Quintiliani Jr., S. Evers, and P. Courvalin. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J. Infect Dis 1993; 167: 1220–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Leclercq, S. Dutka-Malen, J. Duval, and P. Courvalin. Vancomycin resistance determinant vanC is specific to Enterococcus gallinarum. Antimicrob. Agents Chemother. 1992; 36: 2005–8.PubMedCrossRefGoogle Scholar
  12. 12.
    F. Navarro and P. Courvalin. Analysis of genes encoding D-alanine-D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 1994; 38: 1788–73.PubMedCrossRefGoogle Scholar
  13. 13.
    M. Arthur, C. Molinas, F. Depardieu, and P. Courvalin. Characterization of Tn 1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 1993; 175: 117–27.PubMedGoogle Scholar
  14. 14.
    M. Arthur, C. Molinas, and P. Courvalin. The VanS-VanR two component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 1992; 174: 2582–91.PubMedGoogle Scholar
  15. 15.
    S. Handwerger and A. Kolokathis. Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol. Lett. 1990; 70: 167–70.Google Scholar
  16. 16.
    S. Dutka-Malen, C. Molinas, M. Arthur, and P. Courvalin. The VANA glycopeptide resistance protein is related to D-alanyl-D-alanine ligase cell wall biosynthesis enzymes. Mol. Gen. Genet. 1990; 224: 364–72.PubMedCrossRefGoogle Scholar
  17. 17.
    S. Handwerger, M.J. Pucci, K.J. Vol, J. Liu, and M.S. Lee. The cytoplasmic peptidoglycan precursor of vancomycin resistant Enterococcus faecalis terminates in lactate. J. Bacteriol. 1992; 174: 5982–4.PubMedGoogle Scholar
  18. 18.
    J. Messer and P.E. Reynolds. Modified peptidoglycan precursors produced by glycopeptide-resistant enterococci. FEMS Microbiol. Lett. 1992; 94: 195–200.Google Scholar
  19. 19.
    M. Arthur, F. Depardieu, H. Snaith, P.E. Reynolds, and P. Courvalin. Contribution of vanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob. Agents Chemother 1994; 38: 1899–1903.PubMedCrossRefGoogle Scholar
  20. 20.
    R. Leclercq, E. Deroit, M. Weber, J. Duval, P. Courvalin. Tranasferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 1989; 33: 10–5.PubMedCrossRefGoogle Scholar
  21. 21.
    S. Handwerger, M.J. Pucci, and A. Kolokathis. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob. Agents Chemother. 1990; 34: 358–60.PubMedCrossRefGoogle Scholar
  22. 22.
    W.D. Noble, Z. Virani, R.G.A. Cree. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 1992; 93: 195–8.Google Scholar
  23. 23.
    S. Evers, R. Quintiliani Jr., P.E. Reynolds, and P. Courvalin. Phenotypic and genotypic differences between vanA and vanB type glycopeptide resistance in enterococci. Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 1994, p 293.Google Scholar
  24. 24.
    R. Quintiliani Jr. and P. Courvalin. Conjugal transfer of the vancomycinresistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol. Lett. 1994; 119: 359–63.PubMedCrossRefGoogle Scholar
  25. 25.
    S. Evers, D.F. Sahm, and P. Courvalin. The vanB gene of vancomycin resistant Enterocccus faecalis V583 is structurally related to genes encoding D-Ala-D-Ala ligases and glycopeptide resistance proteins VanA and VanC. Gene. 1993; 124: 143–4.PubMedCrossRefGoogle Scholar
  26. 26.
    H.S. Gold, S. Unal, E. Ceranado. et al. A gene conferring resistance to vancomycin but not teicoplanin in isolates of Enterococcus faecalis and Enterococcus faecium demonstrates homology with vanB, vanA and vanC genes of enterococci. Antimicrob. Agents Chemother. 1993; 37: 1604–9.PubMedCrossRefGoogle Scholar
  27. 27.
    M.K. Hayden, D.F. Sahm, R.N. Picken, and G.M. Trenholme. Heterogeneous expression of glycopeptide resistance associated with transfer of vanB among enterococci. Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 1994, p 76.Google Scholar
  28. 28.
    P.E. Reynolds, H.A. Snaith, A.J. Maguire, S. Dutka-Malen, and P. Courvalin. Analysis of peptidoglycan presursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem J. 1994; 301: 5–8.PubMedGoogle Scholar
  29. 29.
    B.M. Willey, B.N. Kreiswirth, A.E. Simor et al. Detection of vancomycin resistance in Enterococcus species. J. Clin. Microbiol. 1992; 30: 1621–4.PubMedGoogle Scholar
  30. 30.
    J.M. Swenson, M.J. Ferraro, D.F. Sahm et al. New vancomycin diffusion breakpoints for enterococci. J. Clin. Microbiol. 1992; 30: 2525–8.PubMedGoogle Scholar
  31. 31.
    CDC: Preventing the spread of vancomycin resistance-report from the hospital infection control practices advisory committee. Fed Register 1994; 59: 2575763.Google Scholar
  32. 32.
    S. Handwerger, B. Raucher, D. Altarac. et al. Nosocomial outbreak due to Enterococcus faecium highly resistant to vancomyyin, penicillin and gentamicin. Clin. Infect. Dis. 1993; 16: 750–3.PubMedCrossRefGoogle Scholar
  33. 33.
    L.L. Livornese Jr., S. Dias, C. Samel et al. Hospital infection with vancomycin resistant Enterococcus faecium transmitted by electronic thermometers. Ann Intern. Med. 1992; 117: 112–6.PubMedCrossRefGoogle Scholar
  34. 34.
    I. Klare, H. Heier, H. Claus et al. Environmental strains of Enterococcus faecium with inducible high level resistance to glycopeptides. FEMS Microbiol. Lett. 1993; 106: 23–30.Google Scholar
  35. 35.
    F. Caron, J.F. Lemeland, G. Humbert, I. Klare, and L. Guttman. Triple combination by a highly penicillin and glycopeptide resistant isolate of Enterococcus faecium. J Infect. Dis. 1993; 168: 681–6.PubMedCrossRefGoogle Scholar
  36. 36.
    H.S. Fraimow and E. Venuti. Inconsistent bactericidal activity of triple-combination therapy with vancomycin, ampicillin and gentamicin against vancomycin resistant, highly ampicillin-resistant Enterococcus faecium. Antimicrob. Agents Chemother. 1992; 36: 1563–6.PubMedCrossRefGoogle Scholar
  37. 37.
    M. Green, B. Binczewski, A.W. Pasculle et al. Constitutively vancomycin resistant Enterococcus faecium resistant to synergistic beta-lactam combinations. Antimicrob. Agents Chemother. 1993; 37: 1238–42.PubMedCrossRefGoogle Scholar
  38. 38.
    M. Green, K. Barbadora, and R.M. Wadowsky. Simple test of synergy between ampicillin and vancomycin for ampicillin-vancomycin resistant Enterococcus faecium. Abstracts of the 93rd General Meeting,American Society for Microbiology, 1993, p. 14.Google Scholar
  39. 39.
    L. Guttman, S. Al-Obeid, D. Billot-Klein, M.L. Guerrier, and E. Collatz. Synergy and resistance to synergy between betalactam antibiotics and glycopeptides against glycopeptide resistant strains of Enterococccus faecium. Antimicrob. Agents Chemother. 1994; 38: 824–9.CrossRefGoogle Scholar
  40. 40.
    M.K. Hayden, G.M. Trenholme, J.E. Schultz, and D.M. Sham. In vivo development of teicoplanin resistance in a vanB Enterococcus faecalis isolate. J Infect. Dis. 1993; 167: 1224–7.PubMedCrossRefGoogle Scholar
  41. 41.
    J.L. Dean, E. Venuti, and H.S. Fraimow. Vancomycin resistant enterococci of the vanB genotype demonstrating glycopeptide resistance inducible by vancomycin or teicoplanin. Abstracts of the 94th General Meeting, American Society for Microbiology, 1994, p. 21.Google Scholar
  42. 42.
    R.C. Moellering Jr.: Therapeutic options for infections caused by multiply-resistant enterococci. Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiology, 1994 p 292.Google Scholar
  43. 43.
    P.P. French, E. Venuti, and H.S. Fraimow. In vitro activity of novobiocin alone and combined with fluoroquinolones against multidrug resistant Enterococcus faecium. Antimicrob. Agents Chemother. 1993; 37: 2736–2739.Google Scholar
  44. 44.
    S. Handwerger, M. Pucci, K.J. Volk, J. Liu, and M.S. Lee. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic precursors that terminate in lactate. J. Bacteriol. 1994; 176: 260–4.PubMedGoogle Scholar
  45. 45.
    D.M. Shlaes, J.H. Shlaes, S. Vincent, et al. Teicoplanin-resistant Staphylococcus aureus expresses a novel membrane protein and increases expression of penicillin binding protein 2 complex. Antimicrob. Agents Chemother. 1993; 37: 2432–7.PubMedCrossRefGoogle Scholar
  46. 46.
    R.S. Schwalbe, J.T. Stapleton, and P.H. Gilligan. Emergence of vancomycin resistance in coagulase negative staphylococci. N. Engl. J. Med. 1987; 316: 297301.Google Scholar
  47. 47.
    L. Herwaldt, L. Boyken, and M. Pfaller. In vitro selection of resistance to vancomycin in bloodstream isolates of Staphylococcus haemolyticus and Staphylococcus epidermidis. Eur. J. Clin. Microbiol. Infect. Dis. 1991; 10: 100712.Google Scholar
  48. 48.
    M.D. O’Hare and P.E. Reynolds. Novel membrane proteins present in teicoplaninresistant, vancomycin sensitive, coagulase negative Staphylococcus spp. J Antimicrob. Chemother. 1992: 30: 753–68.PubMedCrossRefGoogle Scholar
  49. 49.
    G.W. Kaatz, S.M. Seo, Dorman, and S.J. Lerner. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J.Infect. Dis. 1990; 162: 103–8.Google Scholar
  50. 50.
    R.S. Daum, S. Gupta, R. Sabbagh, and W.M. Milewski. Characterization of Staphyloccoccus aureus isolates with decreased susceptibility to vancomycin and teicoplanin: Isolation and purification of a constitutively produced protein associated with decreased susceptibility. J. Infect. Dis. 1992, 166: 1066–72.PubMedCrossRefGoogle Scholar
  51. 51.
    B. Berger-Bachi, A. Strassle, J. Gustafson, and F.H. Kayser. Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1992; 36: 1367–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Henry S. Fraimow
    • 1
    • 2
  • David M. Shlaes
    • 1
    • 2
  1. 1.Antimicrobial Resistance Laboratory Department of MedicineThe Graduate HospitalPhiladelphiaUSA
  2. 2.Department of Veterans Affairs Medical CenterInfectious Diseases SectionClevelandUSA

Personalised recommendations