Antifungal Drugs and Resistance

  • John R. Graybill
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)


From the late 1950’s, extending for two decades thereafter, amphotericin B was the only broad spectrum antifungal drug which could be systemically administered. Because it was the only option, and because systemic mycoses were relatively infrequent, there was little interest in understanding the mechanism of action of amphotericin B, or expanding options for antifungal therapy. The advent of AIDS and our increasing use of broad spectrum antibacterials, immunosuppressive agents, and prosthetic devices have all acted to create large niches which have been vigorously exploited by fungal pathogens. Consequently the past decade has seen unparalleled increases in opportunistic mycoses, and belatedly in efforts to combat them. The advent of new antifungal drugs has been followed by the appreciation of the limitations of each agent, including those imposed by toxicity, pharmacokinetics, and development of resistance on the part of some fungal pathogens. From amphotericin B we have expanded to multiple new classes of drugs, with multiple alternatives within those classes. However, we have still not reached the optimal agents which are fungicidal, minimally toxic, and can be administered either orally or parenterally. The coming years will see additional classes of drugs introduced as we try to identify this ideal antifungal agent. The following in part documents our present understanding of antifungal drug actions and the mechanism by which some fungi can thwart them. The mycoses contrast dramatically with other microbial pathogens, in which elegant molecular biological techniques have been used to probe resistance mechanisms. This is in part because the fungi have been among the last of the major pathogens to achieve an important role in modern medicine. One example of our tardiness is the very slow development of susceptibility testing, and the only recently seen correlations between in vitro results and clinical outcome.1 Only in the last year has come agreement on a method for testing antifungal azole susceptibility, and this applies only to some yeasts.2,3 Considerable gaps yet require filling.


Candida Albicans Invasive Aspergillosis Antimicrob Agent Antifungal Drug Cryptococcal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.N. Galgiani. Susceptibility of Candida albicans and other yeasts to fluconazole: relation between in vitro and in vivo studies. Rev Inf Dis. 12: Supple 3: S272 - S275, 1990.CrossRefGoogle Scholar
  2. 2.
    M.A. Pfaller, B. DuPont, G.S. Kobayashi, J. Muller, M.G. Rinaldi, A.Espinal-Ingroff, S. Shadomt, P.F. Troke, T.J. Walsh, and D.W. Warnock. Standardized susceptibility testing of fluconazole: an international collaborative study. Antimicrob Agents Chemother. 36: 1805–1809, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Proposed standard. NCCLS Document M27-P. National Committee for Clinic] laboratory Standards, Villanova, Pa. 1992.Google Scholar
  4. 4.
    R. Horn, B. Wong, T.E. Keihn, and D. Armstrong. Fungemia in a cancer hospital: changing frequency, earlier onset, and results of therapy. Rev Inf Dis. 7: 646–655, 1985.CrossRefGoogle Scholar
  5. 5.
    V.J. Fraser, M. Jones, J. Dunkel, S. Storfer, G. Medoff, and W.C.Dunagan. Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis. 15: 414–421, 1992.PubMedCrossRefGoogle Scholar
  6. 6.
    G.P. Bodey. Candidiasis in cancer patients. Am J Med. 77 (Suppl 40): 13–19, 1984.PubMedGoogle Scholar
  7. 7.
    R. Horn, B. Wong, T.E. Kiehn, and D. Armstrong. Fungemia in a cancer hospital: changing frequency, earlier onset, and results of therapy. Rev Infect Dis. 7: 646–655, 1985.PubMedCrossRefGoogle Scholar
  8. 8.
    L.J. Wheat, P.A. Connoly-Springfield, R.L. Baker, M.F. Curfman, M.E. Eads, K.S. Israel, S.A. Norris, D.H Webb, and M.L. Zeckel. Disseminated histoplasmosis in the acquired immunodeficiency syndrome: clinical findings, diagnosis and treatment and review of the literature. Medicine. 69: 361–374, 1990.PubMedGoogle Scholar
  9. 9.
    N.M. Ampel, C.L. Dols, and J.N. Galgiani. Coccidioidomycosis during human immunodeficiency virus infection: results of a prospective study in a coccidioidal endemic area. Amer J Med. 94: 235–240, 1993.PubMedCrossRefGoogle Scholar
  10. 10.
    W.G. Powderly. Cryptococcal meningitis and AIDS. Clin Infect Dis. 17: 837–842, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    A.S. Gamis, T. Gudnason, G.S. Giebink, and N.K.C. Ramsay. Disseminated infection with Fusarium in recipients of bone marrow transplantation. Rev Infect Dis. 13: 1077–1078, 1991.PubMedCrossRefGoogle Scholar
  12. 12.
    T.J. Walsh, K.R. Newman, M. Moody, R.C. Wharton, and J.C. Wade. Trichosporosis in patients with neoplastic disease. Medicine. 65: 268–279, 1986.PubMedCrossRefGoogle Scholar
  13. 13.
    E. Anaissie, A. Gokaslan, R. Hachem, R. Rubin, G. Griffin, R. Robinson, J. Sobel, and G. Bodey. Azole therapy for trichosporosis: clinical evaluation of eight patients, experimental therapy for murine infection, and review. Clin Infect Dis. 15: 781–787, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    J.R. Wingard, W.G. Mertz, M.G. Rinaldi, C.B. Miller, J.E. Karp, and R. Saral. Association of Torulopsis glabrata infections with fluconazole prophylaxis in neutropenic bone marrow transplant patients. Antimicrob Agents Chemother. 37: 1847–1849, 1993.PubMedCrossRefGoogle Scholar
  15. 15.
    J. Brajtburg, W.G. Powderly, G. Kobayashi, and G. Medoff. Amphotericin B: understanding of mechanisms of action. Antmic Agents Chemother. 34: 183–188, 1990.CrossRefGoogle Scholar
  16. 16.
    R.A. Woods, M. Bard, I.E. Jackson, and D.J. Drutz. Resistance on polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with amphotericin B resistant funguria. J Infect Dis. 129: 53–8, 1974.PubMedCrossRefGoogle Scholar
  17. 17.
    W.G. Ellis, R.A. Sobel, and S.L. Nielsen. Leukoencephalopathy in patients treated with amphotericin B methyl ester. J Infect Dis. 146: 125–137, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    K.R. Reuhl, M. Vapiwala, M.T. Ryzlak, and C.P. Schaffner. Comparative neurotoxicities of amphotericin B and its one-methyl ester derivative in dogs. Antimicrob Agents Chemother. 37: 419–428, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    P. Hunter, P. Murdock, G. Randall, S. Anthony, S. Jones, A. Everett, C. Winch, and I. Burbidge. Comparative activity in vivo and toxicity of a new polyene CRL49594A and amphotericin B (amB). Abstract 1043, Thirty Second Interscience Conference on Antimicrobrobial Agents and Chemotherapy, Anaheim, CA 1992.Google Scholar
  20. 20.
    V.L. Kan, J.E. Bennett, A. Amantea, M.C. Smolskis, E. McManus, D.M. Grasela, and J.W. Sherman. Comparative safety, tolerance, and pharmacokinetics of amphotericin B lipid comples and amphotericin B desoxycholate in healthy male volunteers. J Infect Dis. 164: 418–421, 1991.PubMedCrossRefGoogle Scholar
  21. 21.
    J.R. Graybill, P.K. Sharkey, D. Vincent, E. Johnson, P. Fan Havard, R. Eng, A. Kolokathis, D. Mildvan, R. Pollard, L. Kerr, B. Zalewska, and R. Gupta. Amphotericin B lipid complex (ABLC) in treatment (Rx) of cryptococcal meningitis (CM) in patients with AIDS. Abstract 289. Thirty First Interscience Conference on Antimicrobrobial Agents and Chemotherapy. Chicago, IL, 1991.Google Scholar
  22. 22.
    P.K. Sharkey, R. Lipke, A. Renteria, J. Galgiani, A. Catanzaro, M. Diaz, A. Kramer, R. Whitney, and R. Gupta. Amphotericin B lipid complex (ABLC) in treatment (Rx) of coccidioidomycosis (C). Abstract 742. Thirty First Interscience Conference on Antimicrobrobial Agents an Chemotherapy. Chicago, IL, 1991.Google Scholar
  23. 23.
    R.N. Davidson, L. DiMartino, and A.D.M. Bryceson. First trial of liposomal amphotericin B (AmBisome) in patients with visceral leishmaniasis: preliminary results. Abstract 235. Thirty Second Interscience Conference on Antimicrobrobial Agents and Chemotherapy, Anaheim, CA 1992.Google Scholar
  24. 24.
    S.W. Sanders, K.N. Buchi, M.S. Goddard, J.K. Lang, and K.G. Tolman. Single-dose pharmacokinetics and tolerance of a cholesteryl sulfate complex of amphotericin B administered to healthy volunteers. Antimicrob Agents Chemother. 35: 1029–1034, 1991.PubMedCrossRefGoogle Scholar
  25. 25.
    G. Lopez-Berestein. Liposomes as carriers of Antimicrobrobial agents. Antimicrobrob Agents Chemother. 31: 675–678, 1987.CrossRefGoogle Scholar
  26. 26.
    J.S. Hostetler, J.W. Caldwell, R.H. Johnson, A.D. Munoz, H.E. Einstein, R.A. Larsen, and D.A. Stevens. Coccidioidal infections treated with amphotericin B colloidal dispersion (Amphocil or ABCD). Abstract 628. Thirty Second Interscience Conference on Antimicrobrobial Agents and Chemotherapy, Anaheim, CA 1992.Google Scholar
  27. 27.
    P.Y. Chavanet, I. Garry, N. Charlier, D. Caillot, J.P. Kisterman, M. D’Athis, and H. Portier. Trial of glucose versus fat emulsion in preparation of amphotericin for use in HIV infected patients with candidiasis. British Med Journal. 305: 921–925, 1992.CrossRefGoogle Scholar
  28. 28.
    T.L. Hatfield, M.B. Smith, R.E. Winn, M.G. Rinaldi, and C. Guerra. Mycoses Caused by Candida lusitaniae. Rev Inf Dis. 9: 1006–1012, 1987.CrossRefGoogle Scholar
  29. 29.
    W.G. Powderly, G.S. Kobayashi, G.O.P. Herzig, and G. Medoff. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Amer J Med. 84: 826–832, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    E.J. Anaissie, R. Hachem, C. Legrand, P. Legenne, P. Nelson, and G.P. Bodey. Lack of activity of amphotericin B in systemic murine fusarial infection. J Infect Dis. 165: 1155–1157, 1992.PubMedCrossRefGoogle Scholar
  31. 31.
    L.I. Lutwick, J.N. Galgiani, R.H. Johnsdon, and D.A. Stevens. Visceral fungal infections due to Petriellidium boydii (allescheria boydii): in vitro drug studies. Am J Med. 61: 632–640, 1976.PubMedCrossRefGoogle Scholar
  32. 32.
    P. Francis and T.J. Walsh. Evolving reole of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin Inf Dis. 15: 1003–1018, 1992.CrossRefGoogle Scholar
  33. 33.
    M.O.F. Fasoli, D. Kerridge, P.G. Morris, and A. Torosantucci. 19F Nuclear magnetic resonance study of fluoropyrimidine metabolism in strains of Candida glabrata with specific defects in pyrimidine metabolism. Antimicrob Agents Chenmother. 34: 1996–2006, 1990.CrossRefGoogle Scholar
  34. 34.
    M. Kissling, P. Keller, and M. Fernex. Effect of 5-fluorocytosine in comparison with amphotericin B and/or 5-fluorouracil on the formation of human mature bursts/colonies of haematopoetic progenitor cells. Mycoses. 31: 107–112, 1988.PubMedCrossRefGoogle Scholar
  35. 35.
    H. vanden Bossche. Biochemical targets for antifungal azole derivatives: hypothesis on the mode of action. In Current Topics in Medical Mycology, Vol I. McGinnis, M, Editor, Springer-Verlag, New York, 1985, pp 313–352.CrossRefGoogle Scholar
  36. 36.
    O. Shimokawa and H. Nakayama. Increased sensitivity of Candida albicans cells accumulation C14-methylated sterols to active oxygen: possible relevance to in vivo efficacies of azole antifungal agents. Antimicrob Agents Chemother. 36: 1626–1629, 1992.PubMedCrossRefGoogle Scholar
  37. 37.
    J.B. Houston, M.J. Humphey, D.E. Matthew, and M.H. Tarbit. Comparison of two azole antifungal drugs, ketoconazole and fluconazole, as modifiers of rat hepatic monoxygenase activity. Biochem Pharmacology. 37: 401–408, 1988.CrossRefGoogle Scholar
  38. 38.
    A. Pont, J.R. Graybill, P.C. Craven, J.N. Galgiani, W.E. Dismukes, R.E. Reitz, and D.A. Stevens. High-dose ketoconazole therapy and adrenal and testicular function in humans. Arch Intern Med. 144: 2150–2153, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    M.R. Kramer, S.E. Marshall, D.W. Denning, A.M. Keogh, R.M. Tucker, J.M. Galgiani, N.J. Lewiston, D.A. Stevens, and J. Theodore. Cyclosporine and interaction in heart and lung transplant recipients. Ann Int Med. 113: 327–329, 1990.PubMedCrossRefGoogle Scholar
  40. 40.
    R.M. Tucker, D.W. Denning, L.H. Hanson, M.G. Rinaldi, J.R. Graybill, P.K. Sharkey, D. Pappagianis, and D.A. Stevens. Interaction of azoles with rifampin, phenytoin, and carbamazepine: in vitro and clinical observations. Clin Infect Dis. 14: 165–174, 1992.PubMedCrossRefGoogle Scholar
  41. 41.
    M. Gumbleton, J.E. Brown, G. Hawksworth, and P.H. Whiting. The possible relationship between hepatic drug metabolism and ketoconazole enhancement of cyclosporine nephrotoxicity. Transplantation. 40: 454–455, 1985.PubMedCrossRefGoogle Scholar
  42. 42.
    D.W. Denning, R.M. Tucker, L.H. Hanson, and A. Stevens. Treatment of invasive aspergillosis with itraconazole. Amer J Med. 86: 791–800, 1989.PubMedCrossRefGoogle Scholar
  43. 43.
    M.R. Kramer, D.W. Denning, S.E. Marshall, D.J. Ross, G. Berry, N.J. Lewiston, D.A. Stevens, and J. Theodore. Ulcerative tracheobronchitis after lung transplantation. Am Rev Resp Dis. 144: 552–556, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    P.K. Sharkey-Mathis, C.A. Kauffman, J.R. Graybill, D.A. Stevens, J.S. Hostetler, G. Cloud, and W.E. Dismukes. Treatment of sporotrichosis with itraconazole. Amer J Med. 95: 279–285, 1993.PubMedCrossRefGoogle Scholar
  45. 45.
    R.E. Winn, J. Anderson, J. Piper, N.E. Aronson, and J. Pluss. Systemic sporotrichosis treated with itraconazole. Clin Inf Dis. 17: 210–217, 1993.CrossRefGoogle Scholar
  46. 46.
    A. Restrepo, A. Gonzalez, I. Gmez, M. Arango, and C. deBedout. Teratment of chromoblastomycosis with itraconazole. Ann New York Acad Sci. 504: 504–516, 1988.CrossRefGoogle Scholar
  47. 47.
    M. Diaz, R. Negroni, F. Montero-Gei, L.G. Castro, A.P. Sampaio, D. Borellu, A. Restrepo, L. Franco, J.L. Bran, E.G. Arathoon, and D.A. Stevens. A Pan-American 5-year study of fluconazole therapy for deep mycoses in the immunocompetent host. Clin Inf Dis. 14 (Suppl 1): S68 - S76, 1992.CrossRefGoogle Scholar
  48. 48.
    P.G. Pappas, C.A. Kauffman, R. Greenfield, D. McKinsey, C. Newman, A. Feldman, and W.E. Dismukes. Fluconazole (Flu) for the treatment of sporotrichosis. Abstract 629. Thirty second Interscience Conference on Antimicrobrobial Agents and Chemotherapy, Anaheim, CA 1992.Google Scholar
  49. 49.
    P.K Sharkey, J.R. Graybill, M.G. Rinaldi, D.A. Stevens, R.M. Tucker, J.D. Peterie, P.D. Hoeprich, D.L. Greer, L. Frenkel, G.W. Counts, J. Goodrich, S. Zellner, R.W. Bradsher, C.M. van der Horst, K. Israel, G.A. Pankey, and C.P. Barranco. Itraconazole treatment of phaeohyphomycosis. J Amer Acad Derm. 23 (Part 2): 577–586, 1990.CrossRefGoogle Scholar
  50. 50.
    K.J. Smith, D.W. Warnock, C.T.C. Kennedy, E.M. Johnson, V. Hopwood, J. van Cusem, and H. vanden Bossche. Azole resistance in Candida albicans. J Med Vet Mycol. 24: 133–144, 1986.PubMedCrossRefGoogle Scholar
  51. 51.
    C.A. Hitchcock, G.W. Pye, P.F. Troke, E.M. Johnson, and D.W. Warnock. Fluconazole resistance in Candida glabrata. Antimicrob Agents Chemother. 37: 1962–2965, 1993.PubMedCrossRefGoogle Scholar
  52. 52.
    J.F. Tyley, R.G. Wilson, and K.J. Barrett-Bee. Azole resistance in Candida albicans. J Med Vet Mycol. 22:53–63, 1984. Google Scholar
  53. 53.
    C.A. Hitchcock, K.J. Barrett-Bee, and N.J. Russell. The lipid composition of azole-sensitive and azole-resistant strains of Candida albicans. J Gen Microbiol. 132:2421–2431, 1986. Google Scholar
  54. 54.
    H. vanden Bossche, P. Marichal, F.C. Odds, L. leJeune, and M.C. Coene. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother. 36: 2602–2610, 1992.CrossRefGoogle Scholar
  55. 55.
    L. Willocks, C.L. Leen, R.P. Brettle, D. Urquhart, T.B. Russell, and L.J. Milne. Fluconazole resistance in AIDS patients. J Antimicrob Chemother. 28 (6) 937–9, 1991.PubMedCrossRefGoogle Scholar
  56. 56.
    P. Sandven, A. Bjorneklett, A. Maeland, and the Norwegian Yeast Study Group. Susceptibilities of Norwegian Candida albicans strains to fluconazole: emergence of resistance. Antimicrob Agents Chemother. 37:2443–2448, 1993. Google Scholar
  57. 57.
    B. DuPont, L. Improvisi, M. Eliaszewicz, and G. Pialoux. Resistance of Candida albicans to fluconazole (FCZ) in AIDS. Abstract 1203 Thirty Second Interscience Confernce on Antimicrobrobial Agents and Chemotherapy, Anaheim, CA, 1992. 49a. Google Scholar
  58. 58.
    C.B. Moore, D.B. Law, L.A. Ganguli, M.G.L. Keaney, and D.W. Denning. Antifungal susceptibility testing of Candida ssp in the north west of England. Abstract 46. Trends in Invasive Fungal Infections II, Manchester, England, 1993. Google Scholar
  59. 59.
    D.L. Brawner and J.D. Meyers. Effects of fluconazole prophylaxis on in vitro susceptibilities of Candida in immunocompromised patients. Abstract 1594. Thirty Second Interscience Conference on Antimicrobrobial Agents and Chemotherapy. Anaheim, CA, 1992.Google Scholar
  60. 60.
    J.L. Goodman, D.J. Winston, R.A. Greenfield, P.H. Chandrasakar, B. Fox, H. Kaizer, R.K. Shadduck, T.C. Shea, P. Stiff, D.J. Friedman, W.G. Powderly, J.L. Silber, H. Horowitz, A. Lichtin, S.N. Wolff, K.F. Mangan, S.M. Silver, D. Weisdorf, G. Gilbert, and D. Buell. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. New Engl J Med. 326: 645–851, 1992.CrossRefGoogle Scholar
  61. 61.
    D.J. Winston, H. Pranarthi, M.D. Chandrasekar, H.M. Lazarus, J.L. Goodman, J.L. Silbr, H. Horowitz, R.K. Shadduck, C.S. Rosenfeld, W.G. Ho, M.Z. Islam, and D.N Buell. Fluconazole prophylaxis of fungal infections in patients with acute leukemia. Ann Int Med. 118: 495–503, 1993.PubMedCrossRefGoogle Scholar
  62. 62.
    J.R. Wingard, W.G. Merz, M.G. Rinaldi, T.R. Johnson, J.E. Karp, and R. Saral. Increase in Candida krusei infection among patients with bone marrow transplantation and neutropenic treated prophylactically with fluconazole. New Engl J Med. 325: 1274–1277, 1991.PubMedCrossRefGoogle Scholar
  63. 63.
    N. Karyotakis, E. Anaissie, R. Hachem, M.C. Dignani, and G. Samonis. Comparison of the efficacy of polyenes and triazoles against hematogenous Candida krusei infection in neutropenic mice. J Inf Dis. 168: 1311–1313, 1993.CrossRefGoogle Scholar
  64. 64.
    M. Akova, H.E. Akalin, O. Uzun, and D. Gur. Emergence of Candida krusei infections after therapy of oropharyngeal candidiasis with fluconazole. Euro J Microbiol Infect Dis. 10: 598–599, 1991.CrossRefGoogle Scholar
  65. 65.
    M.L. Cameron, W.A. Schell, S. Bruch, J.A. Bartlett, H.A. Waskin, and J.R. Perfect. Correlation of in immunodeficiency virus Type I. Antimicrob Agents Chemother. 37: 2449–2453, 1993.CrossRefGoogle Scholar
  66. 66.
    W.G. Powderly, K. Robinson, and E.J. Keath. Molecular epidemiology of recurrent oral candidiasis in human immunodeficiency virus-positive patients: evidence for two patterns of recurrence. J Inf Dis. 168: 463–466, 1993.CrossRefGoogle Scholar
  67. 67.
    H.M. Blumberg, E.F. Hendershot, and T.J. Lott. Persistence of the same Candida albicans strain despite fluconazole therapy. Diagn Microbiol Infect Dis. 15: 55–547, 1992.CrossRefGoogle Scholar
  68. 68.
    J.S. Hostetler, L.H. Hanson, and D.A. Stevens. Effect of cyclodextrin on the pharmacology of antifungal oral azoles. Antimicrob Agents Chemother. 36: 477–480, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    G. Ganger, G. Just-Nubling, M. Eichel, R. Hoika, and W. Stille. Itraconazole solution in patients with non-response to fluconazole. Abstract PO-B09–1394. IXth International Conference on AIDS, Berlin, 1993.Google Scholar
  70. 70.
    B.A. Atkinson, R. Bocanegra, A. Columbo, and J.R. Graybill. Disseminated Torulopisis glabrata infection treated with D0870 and Amphotericin B. Abstract 378. Thirty-third Interscience Conference on Antimocrbial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  71. 71.
    J.D. Velez, R. Allendoerfer, M. Luther, M.G. Rinaldi, and J.R. Graybill. Correlation of in vitro azole susceptibility with in vivo response in a murine model of cryptococcal meningitis. J Infect Dis. 168: 508–510.Google Scholar
  72. 72.
    A. Casadevall, E.D. Spitzer, D. Webb, and M.G. Rinaldi. Susceptibilities of serial Cryptococcus neoformans isolates from patients with recurrent cryptococcal meningitis to amphotericin B abnd fluconazole. Antimicrob Agents Chemother. 37: 1383–1386, 1993.PubMedCrossRefGoogle Scholar
  73. 73.
    A.J. Berry, M.G. Rinaldi, and J.R. Graybill. Use of high dose fluconazole as salvage therapy for cryptococal meningitis in patients with AIDS. Antimicrob Agents Chemother. 36: 690–692, 1992.PubMedCrossRefGoogle Scholar
  74. 74.
    R. Allendoerfer, A.J. Marquis, M.G. Rinaldi, and J.R. Graybill. Combined therapy with fluconazole and flucytosine in murine cryptococcal meningitis. Antimicrob Agents Chemothr. 35: 726–729, 1991.CrossRefGoogle Scholar
  75. 75.
    J.R. Graybill, D.A. Stevens, J.N. Galgiani, W.E. Dismukes, G.A. Cloud, and the NIAID Mycoses Study Group. Itraconazole treatment of coccidioidomycosis. Amer J Med. 89: 282–290, 1990.CrossRefGoogle Scholar
  76. 76.
    J.N. Galgiani, A. Catanzaro, and the NIAID Mycoses Study Group. Fluconazole in coccidioidomycosis Amer J Med. 1993 (In Press)Google Scholar
  77. 77.
    R.M. Tucker, J.N. Galgiani, D.W. Denning, L.H. I-lanson, J.R. Graybill, K. Sharkey, M.R. Eckman, C. Salemi, R. Libke, R.A. Klein, and D.A. Stevens. Treatment of coccidioidal meningitis with fluconazole. Rev Infect Dis. 12 (Supl 1): S380 - S389, 1990.PubMedCrossRefGoogle Scholar
  78. 78.
    J.N. Galgiani, A. Catanzaro, G.A. Cloud, J. Higgs, B.A. Freidman, R.A. Larsen, and J.R. Graybill. Fluconazole therapy for coccidioidal meningitis. The NIAIDMycoses Study Group. Ann Intern Med. 119 (1): 28–35, 1993.PubMedCrossRefGoogle Scholar
  79. 79.
    W.E. Dismukes, R.W. Bradsher, G.C. Cloud, C.A. Kauffman, S.W. Chapman, R.B. George, D.A. Stevens, W.M. Girard, M.S. Saag, C. Bowles-Patton, and the NIAID Mycoses Study Group. Itraconazole therapy for blastomycosis and histoplasmosis. Amer J Med. 93: 489–497, 1992.CrossRefGoogle Scholar
  80. 80.
    M.S. Rouse, B.M. Tallman, J.M. Steckelberg, N.K. Henry, and W.R. Wilson. Efficacy of cilofungin therapy administered by continuous intravenous infusion for experimental disseminated candidiasis in rabbits. Antimicrob Agents Chemother. 36: 56–58, 1992.PubMedCrossRefGoogle Scholar
  81. 81.
    C.S. Taft, T. Stark, and C.P. Selitrennikoff. Cilofungin (LY121019) inhibits Candida albicans (1–3) beta-glucan synthase activity. Antimicrob Agents Chemother. 32: 1901–1903, 1988.PubMedCrossRefGoogle Scholar
  82. 82.
    D. Zeckner, T. Butler, C. Boylan, B. Boy11, Y. Lin, R. Raab, J. Schmidke, and W. Current. LY303366, activity against systemic aspergillosis and histoplasmosis. Abstract 364. Thirty Third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  83. 83.
    R. Gordee, J. Farmer, J. Flokowitsch, and P. Haeber. In vitro antifungal activity of LY-303366, a new antifungal agent derived from echinocandin B. Abstract 360. Thirty Third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  84. 84.
    D.T. Zeckner, T. Butler, B. Boyll, Y. Lin, P. Raab, J. Schmidtke, and W. Current. LY303366. Acivity in a murine systemic candidiasis model. Abstract??? Thirty Third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  85. 85.
    G.K. Abruzzo, A.M. Flattery, C.J. Gill, J.G. Smith, H. Kropp, and K. Bartizal. Evaluation of water soluble lipopeptides L-733,560, L-705,589, and L-731–373 in a mouse model of disseminated aspergillosis. Abstract 355. Thirty third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  86. 86.
    K. Bartizal, G. Abruzzo, C. Trainor, D. Krupa, K. Nollstadt, D. Schmatz, R. Schwartz, M. Hammond, J. Balkovec, and F. vanmiddlesworth. In vitro antifungal activities and in vivo efficacies of 1,3 beta D flucan synthesis inhibitors L-671,329, L-646–991, tetrahydroechinocandin B, and L-687,781, a papulocandin. Antimicrob Agents Chemother. 36:1648–1657, 1992.Google Scholar
  87. 87.
    K. Bartizal, G.K. Abruzzo, A.M. Flattery, C.J. Gill, J.G. Smith, L. Lynch, C.A. Pachelok, T. Scott, L. Long, and H. Kropp. Anti-Candida in vivo efficacy of water soluble lipopeptides L-705,589, L-731,373, and L-733,560. Abstract 353. Thirty third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  88. 88.
    C.A. Pachelok, L. Lynch, H. Kropp, and K. Bartizal. In vitro evaluation of L733,560, a new water soluble lipopeptide hybrid of L-705,589 and L-731,373. Abstract 351. Thirty third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, 1993.Google Scholar
  89. 89.
    R.F. Hector and K. Schaller. Positive interaction of Nikkomycins and azoles against Candida albicans in vitro and in vivo. Antimicrob Agents Chemother. 36: 1284–1289, 1992.PubMedCrossRefGoogle Scholar
  90. 90.
    T. Chapman, O. Kinsman, and J. Houston. Chitin biosynthesis in Candida albicans grown in vitro and in vivo and its inhibition by nikkomycin Z. Antimicrob Agents Chemother. 36: 1909–1914, 1992.PubMedCrossRefGoogle Scholar
  91. 91.
    M. Kakushima, S. Masuyoshi, M. Hirano, M. Shinoda, A. Ohta, H. Kamei, and T. Oki. In vitro and in vivo antifungal activities of BMY-28864, a water-soluble pradimycin derivative. Antimicrob Agents Chemother. 35: 2185–2190, 1991.PubMedCrossRefGoogle Scholar
  92. 92.
    A.W. Fothergill, D.A. McGough, and M.G. Rinaldi. In vitro antifungal activity of DU-6859a in combination with amphotericin B (AMB), fluconazole (FLU), and miconaozle (MON). Abstract 1189. Thirty Third Interscience Conference on Antimicrobrobial Agents and Chemotherapy, New Orleans, LA, 1993.Google Scholar
  93. 93.
    J.R. Graybill, P.C. Craven, L.F. Mitchell, LF, and D. J. D.utz. Interaction of chemotherapy and immune defenses in experimental murine cryptococcosis. Antimicrob Agents Chemother. 14: 659–667, 1978.Google Scholar
  94. 94.
    N. Singh, L. Mielses, V.L. Yu, and T. Gayowski. Invasive aspergillosis in liver transplant recipients: associateion with candidemia and consumption coagulopathy and failure of prophylaxis with low dose amphotericin B. Clin Inf Dis 17: 906–908, 1993.CrossRefGoogle Scholar
  95. 95.
    J.A. Barone, J.G. Koh, R.H. Bierman, J.L. Colaizzi, K.A. Swanson, M.C. Gaffar, B.L. Moskovitz, W. Mechlinski, and V. van de Velde. Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother. 37: 778–784, 1993.PubMedCrossRefGoogle Scholar
  96. 96.
    M. Thaler, B. Pastakia, T.H. Shawker, T. O’Leary, and P.A. Pizzo. Hepatic candidiasis in cancer patients: the evolving picture of the syndrome. Ann Int Med. 108: 88–100, 1988.PubMedCrossRefGoogle Scholar
  97. 97.
    C.A. Kauffman, S.F. Bradley, and S.C. Ross. Hepatosplenic candidiasis: unsuccessful treatment with fluconazole. Amer J Med. 91: 137–141, 1991.PubMedCrossRefGoogle Scholar
  98. 98.
    E. Anaissie, G.P. Bodey, H. Kantarjian, C. David, K. Barnett, E. Bow, R. Defelice, N. Downs, T. File, G. Karam, D Potts, M. Shelton, and A. Sugar. Fluconazole therapy for chronic disseminated candidiasis inpatients with leukemia and prior amphotericin B therapy. Amer J Med. 91: 142–150, 1991.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • John R. Graybill
    • 1
  1. 1.Department of Medicine Division of Infectious DiseaseAudie Murphy V.A. HospitalSan AntonioUSA

Personalised recommendations