Skip to main content

Emerging Trends in Antimicrobial Resistance: A Laboratory Perspective

  • Chapter
Antimicrobial Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 390))

  • 269 Accesses

Abstract

The relatively recent emergence of antimicrobial resistance among several bacterial genera not only complicates the therapeutic management of infected patients,1 but also challenges laboratory testing practices and procedures. To effectively meet these challenges laboratorians must realize the important role they assume in the midst of this “resistance crisis” and re-evaluate their goals and responsibilities regarding provision of susceptibility data. In essence, we must focus this re-evaluation on three central issues regarding laboratory service:

  • Production of accurate and relevant susceptibility testing data

  • Surveillance of emerging resistance mechanisms and trends

  • Meaningful communication of results to physicians

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.C. Neu, The crisis in antibiotic resistance, Science. 257: 1064 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. M.B. Huang, T.E. Gay, C.N. Baker, S.N. Banerjee, and F.C. Tenover, Two percent sodium chloride is required for susceptibility testing of staphylococci with xacillin when using agar-based dilution methods, J. Clin. Microbiol. 31: 2683 (1993).

    PubMed  CAS  Google Scholar 

  3. National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, NCCLS Approved Standard M7–A2 (1990).

    Google Scholar 

  4. National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial disk susceptibility tests, NCCLS Approved Standard M2 - A4 (1990).

    Google Scholar 

  5. M. Skulnick, A.E. Simor, D. Gregson, M. Patel, G.W. Small, B. Kreiswirth, D. Hathoway, and D.E. Low, Evaluation of commercial and standard methodology for determination of oxacillin susceptibility in Staphylococcus aureus, J. Clin. Microbiol. 30: 1985 (1992).

    PubMed  CAS  Google Scholar 

  6. J.L. Gerberding, C.Miick, H.H. Liu, and H.F. Chambers, Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus, Antimicrob. Agents Chemother. 35: 2574 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. L.K. McDougal, and C. Thornsberry, the role of ß-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins, J. Clin. Microbial. 23: 832 (1986).

    CAS  Google Scholar 

  8. A. Tomasz, H.B. Drugeon, H.M. de Lencastre, D. Jabes, L. McDougal, and J. Bille, New mechanism for methicillin resistance in Staphylcoccus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity, Antimicrob. Agents Chemother. 33: 1899 (1989).

    Article  Google Scholar 

  9. H.F. Chambers, G.L. Archer, and M.Matsuhashi, Low-level methicillin resistance of Staphyococcus aureus, Antimicrob. Agents Chemother. 33: 424 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. R.M. Massanari, M.A. Pfaller, D.S. Wakesfield, G.T. Hammons, L.A. McNut, R.F. Woolson, and C.M. Helms, Implications of acquired oxacillin resistance in management and control of Staphylococcal aureus infections, J. Infect. Dis. 158: 702 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. G.L. Archer, and E. Pennell, Detection of methicillin resistance in staphylococci by using a DNA probe, Antimicrob. Agents and Chemother. 34: 1720 (1990).

    Article  CAS  Google Scholar 

  12. K. Murakami, W. Minamide, K. Wada, E. Nakamura, H. Teraoka, and S. Watanabe, Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction, J. Clin. Microbiol. 29: 2240 (1991).

    PubMed  CAS  Google Scholar 

  13. R.C. Moellering, Jr., C. Wennersten, T. Medrek, and A.N. Weinberg, Prevalence of high-level resistance to aminoglycosides in clinical isolates of enterococci, Antimicrob. Agents Chemother. p. 335 (1970).

    Google Scholar 

  14. D.F. Sahm, and C. Torres. Effects of medium and inoculum variations on screening for high-level aminoglycoside resistance in Enterococcus faecalis, J. Clin.Microbiol. 26: 250 (1988).

    PubMed  CAS  Google Scholar 

  15. D.F. Sahm, and C. Torres, High-content aminoglycoside disks for determining aminoglycoside-penicillin synergy against Enterococcus faecalis, J. Clin. Microbiol. 26: 257 (1988).

    PubMed  CAS  Google Scholar 

  16. D.F. Sahm, S. Boonlayangoor, P.C. Iwen, J.L. Baade, and G.L. Woods, Factors influencing determination of high-level aminoglycoside resistance in Enterococcus faecalis, J. Clin. Microbiol. 29: 1934 (1991).

    PubMed  CAS  Google Scholar 

  17. C.A. Spiegel, Laboratory detection of high-level aminoglycoside-aminocyclitol resistance in Enterococcus spp., J. Clin. Microbiol. 26: 2270 (1988).

    PubMed  CAS  Google Scholar 

  18. S. Szeto, M. Louie, D.E. Low, M. Patel, and A.E. Simor, Comparison of the new MicroScan Pos MIC Type 6 Panel and AMS-Vitek Gram Positive Susceptibility Card (GPS-TA) for detection of high-level aminoglycoside resistance in Enterococcus species, J. Clin. Microbiol. 29: 1258 (1991).

    PubMed  CAS  Google Scholar 

  19. D. Weissmann, J. Spargo, C. Wennersten, and M.J. Ferraro, Detection of enterococcal high-level aminoglycoside resistance with MicroScan freeze-dried panels containing newly modified medium and Vitek Gram-Positive susceptibility cards, J. Clin. Microbiol. 29: 1232 (1991).

    PubMed  CAS  Google Scholar 

  20. J.M. Swenson, M.J. Ferraro, D.F. Sahm, F.C. Tenover, and the Working Group on Enterococci, Recommended guidelines for detection of high-level aminoglycoside resistance in enterococci, Abstract 263, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).

    Google Scholar 

  21. A.H.C. Uttley, C.H. Collins, J. Naidou, and R.C. George, Vancomycin-resistant enterococci, Lancet i: 57 (1988).

    Google Scholar 

  22. R. Leclercq, E. Derlot, J. Duval, and P. Courvalin, Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium, N. Engl. J. Med. 319: 17 (1988).

    Article  Google Scholar 

  23. D.F. Sahm, J. Kissinger, M.S. Gilmore, P.R. Murray, R. Mulder, J. Solliday, and B. Clarke, In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis, J. Clin. Microbiol. 33: 1588 (1989).

    Google Scholar 

  24. J.M. Swenson, B.C. Hill, and C. Thornsberry, Problems with the disk diffusion test for detection of vancomycin resistance in enterococci, J. Clin. Microbiol. 27: 2140 (1989).

    PubMed  CAS  Google Scholar 

  25. D.F. Sahm, and L. Olsen, In vitro detection of enterococcal vancomycin resistance, Antimicrob. Agents Chemother. 34: 1846 (1990).

    Google Scholar 

  26. J.M. Swenson, M.J. Ferraro, D.F. Sahm, P. Charache, The Enterococcal Committee for Clinical Laboratory Standards Working Group on Enterococci, and F.C. Tenover, New vancomycin disk diffusion breakpoints for enterococci, J. Clin. Microbiol. 30: 2525 (1992).

    PubMed  CAS  Google Scholar 

  27. National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial susceptibility testing, NCCLS supplement M100–S4 (1992).

    Google Scholar 

  28. F.C. Tenover, J. Tokars, J. Swenson, S. Paul, K. Spitalny, and W. Jarvis, Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci, J. Clin. Microbiol. 31: 1695 (1993).

    PubMed  CAS  Google Scholar 

  29. B.D. Jett, A.S. Artz, L.K. Free, and D.F. Sahm, Heterogeneous expression and detection of van B-mediated vancomycin resistance in enterococci, Abstract 154, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).

    Google Scholar 

  30. B.M. Willey, B.N. Kreiswirth, A.E. Simor, G. Williams, S.R. Scriver, A. Phillips, and D.E. Low, Detection of vancomycin resistance in Enterococcus species, J. Clin. Microbiol. 30: 1621 (1992).

    PubMed  CAS  Google Scholar 

  31. J.M. Swenson, N. Clark, M.J. Ferraro, D.F. Sahm, G. Doern, M.A. Pfaller, L.B. Reller, M. Weinstein, R.J. Zabransky, and F.C. Tenover, Screening enterococci for vancomycin resistance, J. Clin. Microbiol. In preparation (1994).

    Google Scholar 

  32. J.S. Bradley, and J.D. Connor, Ceftriaxone failure in meningitis caused by S. pneumoniae with reduced susceptibility to beta-lactam antibiotics, Pediatr. Infect. Dis. J. 10: 871 (1991).

    Article  PubMed  CAS  Google Scholar 

  33. A.M. Figueinedo, J.D. Connor, A. Severin, M. Vitoria Vaz Pato, and A. Tomasz, A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone, Antimicrob. Agents Chemother. 36: 886 (1992).

    Article  Google Scholar 

  34. M.M. Sloas, F.F. Barrett, P.J. Chesney, B.K.English, B.C. Hill, F.C. Tenover, and R. Leggiadro, Cephalosporin treatment failure in penicillin-and cephalosporin-resistant Streptococcus pneumoniae meningitis, Pediatr. Infect. Dis. J. 11: 662 (1992).

    PubMed  CAS  Google Scholar 

  35. J.H. Jorgensen, A.W. Howell, and L.A. Maher, Quantitative antimicrobial susceptibility testing of Haemophilus influenzae and Streptococcus pneumoniae by using the E-test, J. Clin. Microbiol. 29: 109 (1991).

    PubMed  CAS  Google Scholar 

  36. M.R. Jacobs, S. Bajaksouzian, P.C. Appelbaum, and A. Bolmstrom, Evaluation of the E-test for susceptibility testing of pneumococci, Diagn. Microbiol. Infect. Dis. 15: 474 (1992).

    Article  Google Scholar 

  37. J.H. Jorgensen, J.M. Swenson, F.C. Tenover, M.J. Ferraro, J.A. Hindler, and P.R. Murray, Development of quality control and interpretive criteria for antimicrobial susceptibility testing of Streptococcus pneumoniae. Abstract 262, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).

    Google Scholar 

  38. G.A. Jacoby, and A.A. Medeiros, More extended-spectrum 3-lactamases, Antimicrob. Agents Chemother. 35: 1697 (1991).

    Article  PubMed  CAS  Google Scholar 

  39. T.G. Emori, and R.P. Gaynes, An overview of nosocomial infections, including the role of the microbiology laboratory, Clin. Microbiol. Rev. 6: 428 (1993).

    PubMed  CAS  Google Scholar 

  40. K.S. Thomson, and C.C. Sanders, Detection of extended-spectrum 3-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three dimensional tests, Antimicrob. Agents Chemother. 36: 1877 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. K.S. Meyer, C. Urban, J.A. Eagan, B.J. Berger, and J.J. Rahal, Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins, Ann. Intern. Med. 119: 353 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. V. Jarlier, M. Nicolas, G. Fournier, and A. Philippon, Extended broad-spectrum 13-lactamases conferring transferrable resistance to newer 3-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns, Rev. Infect. Dis. 10: 867 (1988).

    Article  PubMed  CAS  Google Scholar 

  43. P. Courvalin, Interpretive reading of antimicrobial susceptibility tests, American Society for Microbiology News 58: 368 (1992).

    Google Scholar 

  44. J.P. Quinn, D. Miyashiro, D. Sahm, R. Flamm, and K. Bush, Novel plasmid-mediated 3-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae, Antimicrob. Agents Chemother. 33: 1451 (1989).

    Article  PubMed  CAS  Google Scholar 

  45. S. Evers, D.F. Sahm, and P. Courvalin, The uanB gene of vancomycin-resistant Enterococccus faecalis V583 is structurally related to genes encoding D-ala:D-ala ligases and glycopeptide-resistance proteins Van A and Van C, Gene 124: 143 (1993)

    Google Scholar 

  46. J.A. Hindler, and D.F. Sahm, Controversies and confusion regarding antimicrobial susceptibility testing of enterococci, Antimicrob. News1. 8: 65 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sahm, D.F. (1995). Emerging Trends in Antimicrobial Resistance: A Laboratory Perspective. In: Jungkind, D.L., Mortensen, J.E., Fraimow, H.S., Calandra, G.B. (eds) Antimicrobial Resistance. Advances in Experimental Medicine and Biology, vol 390. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9203-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9203-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9205-8

  • Online ISBN: 978-1-4757-9203-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics