Emerging Trends in Antimicrobial Resistance: A Laboratory Perspective

  • Daniel F. Sahm
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)


The relatively recent emergence of antimicrobial resistance among several bacterial genera not only complicates the therapeutic management of infected patients,1 but also challenges laboratory testing practices and procedures. To effectively meet these challenges laboratorians must realize the important role they assume in the midst of this “resistance crisis” and re-evaluate their goals and responsibilities regarding provision of susceptibility data. In essence, we must focus this re-evaluation on three central issues regarding laboratory service:
  • Production of accurate and relevant susceptibility testing data

  • Surveillance of emerging resistance mechanisms and trends

  • Meaningful communication of results to physicians


Disk Diffusion Antimicrobial Susceptibility Testing Clinical Laboratory Standard Methicillin Resistance Susceptibility Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.C. Neu, The crisis in antibiotic resistance, Science. 257: 1064 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    M.B. Huang, T.E. Gay, C.N. Baker, S.N. Banerjee, and F.C. Tenover, Two percent sodium chloride is required for susceptibility testing of staphylococci with xacillin when using agar-based dilution methods, J. Clin. Microbiol. 31: 2683 (1993).PubMedGoogle Scholar
  3. 3.
    National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, NCCLS Approved Standard M7–A2 (1990).Google Scholar
  4. 4.
    National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial disk susceptibility tests, NCCLS Approved Standard M2 - A4 (1990).Google Scholar
  5. 5.
    M. Skulnick, A.E. Simor, D. Gregson, M. Patel, G.W. Small, B. Kreiswirth, D. Hathoway, and D.E. Low, Evaluation of commercial and standard methodology for determination of oxacillin susceptibility in Staphylococcus aureus, J. Clin. Microbiol. 30: 1985 (1992).PubMedGoogle Scholar
  6. 6.
    J.L. Gerberding, C.Miick, H.H. Liu, and H.F. Chambers, Comparison of conventional susceptibility tests with direct detection of penicillin-binding protein 2a in borderline oxacillin-resistant strains of Staphylococcus aureus, Antimicrob. Agents Chemother. 35: 2574 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    L.K. McDougal, and C. Thornsberry, the role of ß-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins, J. Clin. Microbial. 23: 832 (1986).Google Scholar
  8. 8.
    A. Tomasz, H.B. Drugeon, H.M. de Lencastre, D. Jabes, L. McDougal, and J. Bille, New mechanism for methicillin resistance in Staphylcoccus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity, Antimicrob. Agents Chemother. 33: 1899 (1989).CrossRefGoogle Scholar
  9. 9.
    H.F. Chambers, G.L. Archer, and M.Matsuhashi, Low-level methicillin resistance of Staphyococcus aureus, Antimicrob. Agents Chemother. 33: 424 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    R.M. Massanari, M.A. Pfaller, D.S. Wakesfield, G.T. Hammons, L.A. McNut, R.F. Woolson, and C.M. Helms, Implications of acquired oxacillin resistance in management and control of Staphylococcal aureus infections, J. Infect. Dis. 158: 702 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    G.L. Archer, and E. Pennell, Detection of methicillin resistance in staphylococci by using a DNA probe, Antimicrob. Agents and Chemother. 34: 1720 (1990).CrossRefGoogle Scholar
  12. 12.
    K. Murakami, W. Minamide, K. Wada, E. Nakamura, H. Teraoka, and S. Watanabe, Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction, J. Clin. Microbiol. 29: 2240 (1991).PubMedGoogle Scholar
  13. 13.
    R.C. Moellering, Jr., C. Wennersten, T. Medrek, and A.N. Weinberg, Prevalence of high-level resistance to aminoglycosides in clinical isolates of enterococci, Antimicrob. Agents Chemother. p. 335 (1970).Google Scholar
  14. 14.
    D.F. Sahm, and C. Torres. Effects of medium and inoculum variations on screening for high-level aminoglycoside resistance in Enterococcus faecalis, J. Clin.Microbiol. 26: 250 (1988).PubMedGoogle Scholar
  15. 15.
    D.F. Sahm, and C. Torres, High-content aminoglycoside disks for determining aminoglycoside-penicillin synergy against Enterococcus faecalis, J. Clin. Microbiol. 26: 257 (1988).PubMedGoogle Scholar
  16. 16.
    D.F. Sahm, S. Boonlayangoor, P.C. Iwen, J.L. Baade, and G.L. Woods, Factors influencing determination of high-level aminoglycoside resistance in Enterococcus faecalis, J. Clin. Microbiol. 29: 1934 (1991).PubMedGoogle Scholar
  17. 17.
    C.A. Spiegel, Laboratory detection of high-level aminoglycoside-aminocyclitol resistance in Enterococcus spp., J. Clin. Microbiol. 26: 2270 (1988).PubMedGoogle Scholar
  18. 18.
    S. Szeto, M. Louie, D.E. Low, M. Patel, and A.E. Simor, Comparison of the new MicroScan Pos MIC Type 6 Panel and AMS-Vitek Gram Positive Susceptibility Card (GPS-TA) for detection of high-level aminoglycoside resistance in Enterococcus species, J. Clin. Microbiol. 29: 1258 (1991).PubMedGoogle Scholar
  19. 19.
    D. Weissmann, J. Spargo, C. Wennersten, and M.J. Ferraro, Detection of enterococcal high-level aminoglycoside resistance with MicroScan freeze-dried panels containing newly modified medium and Vitek Gram-Positive susceptibility cards, J. Clin. Microbiol. 29: 1232 (1991).PubMedGoogle Scholar
  20. 20.
    J.M. Swenson, M.J. Ferraro, D.F. Sahm, F.C. Tenover, and the Working Group on Enterococci, Recommended guidelines for detection of high-level aminoglycoside resistance in enterococci, Abstract 263, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).Google Scholar
  21. 21.
    A.H.C. Uttley, C.H. Collins, J. Naidou, and R.C. George, Vancomycin-resistant enterococci, Lancet i: 57 (1988).Google Scholar
  22. 22.
    R. Leclercq, E. Derlot, J. Duval, and P. Courvalin, Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium, N. Engl. J. Med. 319: 17 (1988).CrossRefGoogle Scholar
  23. 23.
    D.F. Sahm, J. Kissinger, M.S. Gilmore, P.R. Murray, R. Mulder, J. Solliday, and B. Clarke, In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis, J. Clin. Microbiol. 33: 1588 (1989).Google Scholar
  24. 24.
    J.M. Swenson, B.C. Hill, and C. Thornsberry, Problems with the disk diffusion test for detection of vancomycin resistance in enterococci, J. Clin. Microbiol. 27: 2140 (1989).PubMedGoogle Scholar
  25. 25.
    D.F. Sahm, and L. Olsen, In vitro detection of enterococcal vancomycin resistance, Antimicrob. Agents Chemother. 34: 1846 (1990).Google Scholar
  26. 26.
    J.M. Swenson, M.J. Ferraro, D.F. Sahm, P. Charache, The Enterococcal Committee for Clinical Laboratory Standards Working Group on Enterococci, and F.C. Tenover, New vancomycin disk diffusion breakpoints for enterococci, J. Clin. Microbiol. 30: 2525 (1992).PubMedGoogle Scholar
  27. 27.
    National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial susceptibility testing, NCCLS supplement M100–S4 (1992).Google Scholar
  28. 28.
    F.C. Tenover, J. Tokars, J. Swenson, S. Paul, K. Spitalny, and W. Jarvis, Ability of clinical laboratories to detect antimicrobial agent-resistant enterococci, J. Clin. Microbiol. 31: 1695 (1993).PubMedGoogle Scholar
  29. 29.
    B.D. Jett, A.S. Artz, L.K. Free, and D.F. Sahm, Heterogeneous expression and detection of van B-mediated vancomycin resistance in enterococci, Abstract 154, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).Google Scholar
  30. 30.
    B.M. Willey, B.N. Kreiswirth, A.E. Simor, G. Williams, S.R. Scriver, A. Phillips, and D.E. Low, Detection of vancomycin resistance in Enterococcus species, J. Clin. Microbiol. 30: 1621 (1992).PubMedGoogle Scholar
  31. 31.
    J.M. Swenson, N. Clark, M.J. Ferraro, D.F. Sahm, G. Doern, M.A. Pfaller, L.B. Reller, M. Weinstein, R.J. Zabransky, and F.C. Tenover, Screening enterococci for vancomycin resistance, J. Clin. Microbiol. In preparation (1994).Google Scholar
  32. 32.
    J.S. Bradley, and J.D. Connor, Ceftriaxone failure in meningitis caused by S. pneumoniae with reduced susceptibility to beta-lactam antibiotics, Pediatr. Infect. Dis. J. 10: 871 (1991).PubMedCrossRefGoogle Scholar
  33. 33.
    A.M. Figueinedo, J.D. Connor, A. Severin, M. Vitoria Vaz Pato, and A. Tomasz, A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone, Antimicrob. Agents Chemother. 36: 886 (1992).CrossRefGoogle Scholar
  34. 34.
    M.M. Sloas, F.F. Barrett, P.J. Chesney, B.K.English, B.C. Hill, F.C. Tenover, and R. Leggiadro, Cephalosporin treatment failure in penicillin-and cephalosporin-resistant Streptococcus pneumoniae meningitis, Pediatr. Infect. Dis. J. 11: 662 (1992).PubMedGoogle Scholar
  35. 35.
    J.H. Jorgensen, A.W. Howell, and L.A. Maher, Quantitative antimicrobial susceptibility testing of Haemophilus influenzae and Streptococcus pneumoniae by using the E-test, J. Clin. Microbiol. 29: 109 (1991).PubMedGoogle Scholar
  36. 36.
    M.R. Jacobs, S. Bajaksouzian, P.C. Appelbaum, and A. Bolmstrom, Evaluation of the E-test for susceptibility testing of pneumococci, Diagn. Microbiol. Infect. Dis. 15: 474 (1992).CrossRefGoogle Scholar
  37. 37.
    J.H. Jorgensen, J.M. Swenson, F.C. Tenover, M.J. Ferraro, J.A. Hindler, and P.R. Murray, Development of quality control and interpretive criteria for antimicrobial susceptibility testing of Streptococcus pneumoniae. Abstract 262, 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy (1993).Google Scholar
  38. 38.
    G.A. Jacoby, and A.A. Medeiros, More extended-spectrum 3-lactamases, Antimicrob. Agents Chemother. 35: 1697 (1991).PubMedCrossRefGoogle Scholar
  39. 39.
    T.G. Emori, and R.P. Gaynes, An overview of nosocomial infections, including the role of the microbiology laboratory, Clin. Microbiol. Rev. 6: 428 (1993).PubMedGoogle Scholar
  40. 40.
    K.S. Thomson, and C.C. Sanders, Detection of extended-spectrum 3-lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three dimensional tests, Antimicrob. Agents Chemother. 36: 1877 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    K.S. Meyer, C. Urban, J.A. Eagan, B.J. Berger, and J.J. Rahal, Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins, Ann. Intern. Med. 119: 353 (1993).PubMedCrossRefGoogle Scholar
  42. 42.
    V. Jarlier, M. Nicolas, G. Fournier, and A. Philippon, Extended broad-spectrum 13-lactamases conferring transferrable resistance to newer 3-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns, Rev. Infect. Dis. 10: 867 (1988).PubMedCrossRefGoogle Scholar
  43. 43.
    P. Courvalin, Interpretive reading of antimicrobial susceptibility tests, American Society for Microbiology News 58: 368 (1992).Google Scholar
  44. 44.
    J.P. Quinn, D. Miyashiro, D. Sahm, R. Flamm, and K. Bush, Novel plasmid-mediated 3-lactamase (TEM-10) conferring selective resistance to ceftazidime and aztreonam in clinical isolates of Klebsiella pneumoniae, Antimicrob. Agents Chemother. 33: 1451 (1989).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Evers, D.F. Sahm, and P. Courvalin, The uanB gene of vancomycin-resistant Enterococccus faecalis V583 is structurally related to genes encoding D-ala:D-ala ligases and glycopeptide-resistance proteins Van A and Van C, Gene 124: 143 (1993)Google Scholar
  46. 46.
    J.A. Hindler, and D.F. Sahm, Controversies and confusion regarding antimicrobial susceptibility testing of enterococci, Antimicrob. News1. 8: 65 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Daniel F. Sahm
    • 1
  1. 1.Department of PathologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations