Antibiotics pp 179-213 | Cite as

Biosynthesis and Genetics of Antibiotic Production

  • Giancarlo Lancini
  • Francesco Parenti
  • Gian Gualberto Gallo


The study of biochemical and genetic aspects of antibiotic production is of great interest because it casts light on the mechanisms of cellular differentiation. It is also important for two practical reasons: the improvement of production yields and the possibility of directing the fermentation process toward products with desired characteristics.


Biosynthetic Pathway Biosynthetic Gene Antibiotic Production Shikimic Acid Acyl Carrier Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Chapter 6. Biosynthesis and Genetics of Antibiotic Production

  1. Baltz, R. H., Hegeman, G. D., and Skatrud, P. L. (eds.), 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, American Society for Microbiology, Washington, D.C.Google Scholar
  2. Corcoran, J. W. (ed.), 1981, Antibiotics IV: Biosynthesis, Springer-Verlag, Berlin. Floss, H. G., and Beale, J. M., 1989, Biosynthetic studies on antibiotics, Angew. Chem. Int. Ed. Engl. 28: 146.Google Scholar
  3. Hershberger, C. L., Queener, S. W., and Hegeman, G. (eds.), 1989, Genetics and Molecular Biology of Industrial Microorganisms, American Society for Microbiology, Washington, D.C.Google Scholar
  4. Horinouchi, S., and Beppu, T., 1992, Autoregulatory factors and communication in actinomycetes, Annu. Rev. Microbial. 46: 377.CrossRefGoogle Scholar
  5. Lancini, G. C., and Lorenzetti, R., 1993 Biotechnology of Antibiotics and Other Microbial MetabolitesPlenum Press, New York. Google Scholar
  6. Pape, H., and Rehm, FI. J. (eds.), 1986, Biotechnology,Vol. 4: Microbial Products 1I,VCH Verlag, Weinheim.Google Scholar
  7. Vandamme, E. J. (ed.), 1984 Biotechnology of Industrial AntibioticsDekker, New York. Vining, L. C. (ed.), 1983 Biochemistry and Genetic Regulation of Commercially Important AntibioticsAddison–Wesley, Reading, Mass. Google Scholar
  8. Aharonowitz, Y., Cohen, G., and Martin, J. F., 1992, Penicillin and cephalosporin biosynthetic genes: Structure, organization, regulation, and evolution, Annu. Rev. Microbiol. 46: 461.PubMedCrossRefGoogle Scholar
  9. Donadio, S., Stayer, M. J., McAlpine, J. B., Swanson, S. J., and Katz, L., 1991, Modular organization of genes required for complex polyketide biosynthesis, Science 252: 675.PubMedCrossRefGoogle Scholar
  10. Doull, J., Ahmed, Z., Stuttard, C., and Vining, L. C., 1985, Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis, J. Gen. Microbiol. 131: 97.PubMedGoogle Scholar
  11. Ebersole, R. C., Godfredsen, W. O., Vangedal, S., and Caspi, E., 1973, Mechanism of oxidative cyclization of squalene. Evidence for cyclization of squalene from either end of squalene molecule in the in vivo biosynthesis of fusidic acid by Fusidium coccineum, J. Am. Chem. Soc. 95: 8133.PubMedCrossRefGoogle Scholar
  12. Elson, S. W., Baggaley, K. H., Davison, M., Fulstone, M., Nicholson, N. H., Risbridger, G. D., and Tyler, J. W., 1993, The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway, J. Chem, Soc., Client. Commun. 1993: 1212.Google Scholar
  13. Harris, C. M., Roberson, J. S., and Harris, T. M., 1976, Biosynthesis of griseofulvin J. Am. Chem. Soc. 98:5380. Google Scholar
  14. Isono, K., 1988, Nucleoside antibiotics: Structure, antibiotic activity and biosynthesis J. Antibiot. 41:1711. Google Scholar
  15. Jung, G., 1991, Lantibiotics—Ribosomally synthesized biologically active polypeptides containing sulfide bridges and u-13-didehydroamino acids, Angeza. Chem. Int. Ed. Engl. 30: 1051.CrossRefGoogle Scholar
  16. Kakinuma, K., Ogawa, Y., Sakasi, T., Seto, H., and Otake, N., 1989, Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C, J. Antibiot. 42: 926.PubMedCrossRefGoogle Scholar
  17. Katz, L., and Donadio, S., 1993, Polyketide synthesis: Prospects for hybrid antibiotics Annu. Rev. Microbiol. 47:875. Google Scholar
  18. Kleinkauf, H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics Annu. Rev. Microbiol. 41:259. Google Scholar
  19. Kuo, M. S., Yurek, D. A., Coats, J. H., Chung, S. T., and Li, G. P., 1992, Isolation and identification of 3-propylidene-A-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. 45: 1773.PubMedCrossRefGoogle Scholar
  20. Lacalle, R. A., Tercero, J. A., and Jiménez, A., 1992, Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts, EMBO J. 11: 785.Google Scholar
  21. Lancini, G. C., 1986, Ansamycins, in Biotechnology, Vol. 4: Microbial Products II ( H. Pape and H.-J. Rehm, eds.), pp. 431–463, VCH Verlag, Weinheim.Google Scholar
  22. Lancini, G. C., 1989, Fermentation and biosynthesis of glycopeptide antibiotics, Prog. Ind. Microbiol. 27: 283.Google Scholar
  23. Martin, J. F., 1984, Biosynthesis, regulation and genetics of polyene macrolide antibiotics, in Macrolide Antibiotics ( S. Omura, ed.), pp. 405–424, Academic Press, New York.Google Scholar
  24. Okuda, T., and Ito, Y., 1982, Biosynthesis and mutasynthesis of aminoglycoside antibiotics, in Aminoglycoside Antibiotics ( H. Umezawa and I. R. Hooper, eds.), pp. 111–203, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  25. Omura, S., and Tanaka, Y., 1984, Biochemistry, regulation and genetics of macrolide production, in Macrolide Antibiotics ( S. Omura, ed.), pp. 199–259, Academic Press, New York.Google Scholar
  26. Perlman, D., Otani, S., Perlman, K. L., and Walker, J. E., 1973, 3-Hydroxy-4-methylkynurenine as an intermediate in actinomycin biosynthesis, J. Antibiot. 26: 289.Google Scholar
  27. Vater, J., 1990, Gramicidin S synthetase, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. von Döhren, eds.), pp. 33–55, de Gruyter, Berlin.Google Scholar
  28. Walker, J. B., 1975, Pathways of biosynthesis of guanetidated inositol moieties of streptomycin and bluensomycin, Methods Enzymol. 43: 429.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Giancarlo Lancini
    • 1
  • Francesco Parenti
    • 2
  • Gian Gualberto Gallo
    • 1
  1. 1.Lepetit Research CenterMarion Merrell Dow Research Institute (MMDRI)GerenzanoItaly
  2. 2.Marion Merrell Dow Europe AGHorgenSwitzerland

Personalised recommendations