Skip to main content

Biosynthesis and Genetics of Antibiotic Production

  • Chapter
Antibiotics

Abstract

The study of biochemical and genetic aspects of antibiotic production is of great interest because it casts light on the mechanisms of cellular differentiation. It is also important for two practical reasons: the improvement of production yields and the possibility of directing the fermentation process toward products with desired characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Chapter 6. Biosynthesis and Genetics of Antibiotic Production

  • Baltz, R. H., Hegeman, G. D., and Skatrud, P. L. (eds.), 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Corcoran, J. W. (ed.), 1981, Antibiotics IV: Biosynthesis, Springer-Verlag, Berlin. Floss, H. G., and Beale, J. M., 1989, Biosynthetic studies on antibiotics, Angew. Chem. Int. Ed. Engl. 28: 146.

    Google Scholar 

  • Hershberger, C. L., Queener, S. W., and Hegeman, G. (eds.), 1989, Genetics and Molecular Biology of Industrial Microorganisms, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Horinouchi, S., and Beppu, T., 1992, Autoregulatory factors and communication in actinomycetes, Annu. Rev. Microbial. 46: 377.

    Article  CAS  Google Scholar 

  • Lancini, G. C., and Lorenzetti, R., 1993 Biotechnology of Antibiotics and Other Microbial MetabolitesPlenum Press, New York.

    Google Scholar 

  • Pape, H., and Rehm, FI. J. (eds.), 1986, Biotechnology,Vol. 4: Microbial Products 1I,VCH Verlag, Weinheim.

    Google Scholar 

  • Vandamme, E. J. (ed.), 1984 Biotechnology of Industrial AntibioticsDekker, New York. Vining, L. C. (ed.), 1983 Biochemistry and Genetic Regulation of Commercially Important AntibioticsAddison–Wesley, Reading, Mass.

    Google Scholar 

  • Aharonowitz, Y., Cohen, G., and Martin, J. F., 1992, Penicillin and cephalosporin biosynthetic genes: Structure, organization, regulation, and evolution, Annu. Rev. Microbiol. 46: 461.

    Article  PubMed  CAS  Google Scholar 

  • Donadio, S., Stayer, M. J., McAlpine, J. B., Swanson, S. J., and Katz, L., 1991, Modular organization of genes required for complex polyketide biosynthesis, Science 252: 675.

    Article  PubMed  CAS  Google Scholar 

  • Doull, J., Ahmed, Z., Stuttard, C., and Vining, L. C., 1985, Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis, J. Gen. Microbiol. 131: 97.

    PubMed  CAS  Google Scholar 

  • Ebersole, R. C., Godfredsen, W. O., Vangedal, S., and Caspi, E., 1973, Mechanism of oxidative cyclization of squalene. Evidence for cyclization of squalene from either end of squalene molecule in the in vivo biosynthesis of fusidic acid by Fusidium coccineum, J. Am. Chem. Soc. 95: 8133.

    Article  PubMed  CAS  Google Scholar 

  • Elson, S. W., Baggaley, K. H., Davison, M., Fulstone, M., Nicholson, N. H., Risbridger, G. D., and Tyler, J. W., 1993, The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway, J. Chem, Soc., Client. Commun. 1993: 1212.

    Google Scholar 

  • Harris, C. M., Roberson, J. S., and Harris, T. M., 1976, Biosynthesis of griseofulvin J. Am. Chem. Soc. 98:5380.

    Google Scholar 

  • Isono, K., 1988, Nucleoside antibiotics: Structure, antibiotic activity and biosynthesis J. Antibiot. 41:1711.

    Google Scholar 

  • Jung, G., 1991, Lantibiotics—Ribosomally synthesized biologically active polypeptides containing sulfide bridges and u-13-didehydroamino acids, Angeza. Chem. Int. Ed. Engl. 30: 1051.

    Article  Google Scholar 

  • Kakinuma, K., Ogawa, Y., Sakasi, T., Seto, H., and Otake, N., 1989, Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C, J. Antibiot. 42: 926.

    Article  PubMed  CAS  Google Scholar 

  • Katz, L., and Donadio, S., 1993, Polyketide synthesis: Prospects for hybrid antibiotics Annu. Rev. Microbiol. 47:875.

    Google Scholar 

  • Kleinkauf, H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics Annu. Rev. Microbiol. 41:259.

    Google Scholar 

  • Kuo, M. S., Yurek, D. A., Coats, J. H., Chung, S. T., and Li, G. P., 1992, Isolation and identification of 3-propylidene-A-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. 45: 1773.

    Article  PubMed  CAS  Google Scholar 

  • Lacalle, R. A., Tercero, J. A., and Jiménez, A., 1992, Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts, EMBO J. 11: 785.

    Google Scholar 

  • Lancini, G. C., 1986, Ansamycins, in Biotechnology, Vol. 4: Microbial Products II ( H. Pape and H.-J. Rehm, eds.), pp. 431–463, VCH Verlag, Weinheim.

    Google Scholar 

  • Lancini, G. C., 1989, Fermentation and biosynthesis of glycopeptide antibiotics, Prog. Ind. Microbiol. 27: 283.

    Google Scholar 

  • Martin, J. F., 1984, Biosynthesis, regulation and genetics of polyene macrolide antibiotics, in Macrolide Antibiotics ( S. Omura, ed.), pp. 405–424, Academic Press, New York.

    Google Scholar 

  • Okuda, T., and Ito, Y., 1982, Biosynthesis and mutasynthesis of aminoglycoside antibiotics, in Aminoglycoside Antibiotics ( H. Umezawa and I. R. Hooper, eds.), pp. 111–203, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Omura, S., and Tanaka, Y., 1984, Biochemistry, regulation and genetics of macrolide production, in Macrolide Antibiotics ( S. Omura, ed.), pp. 199–259, Academic Press, New York.

    Google Scholar 

  • Perlman, D., Otani, S., Perlman, K. L., and Walker, J. E., 1973, 3-Hydroxy-4-methylkynurenine as an intermediate in actinomycin biosynthesis, J. Antibiot. 26: 289.

    Google Scholar 

  • Vater, J., 1990, Gramicidin S synthetase, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. von Döhren, eds.), pp. 33–55, de Gruyter, Berlin.

    Google Scholar 

  • Walker, J. B., 1975, Pathways of biosynthesis of guanetidated inositol moieties of streptomycin and bluensomycin, Methods Enzymol. 43: 429.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lancini, G., Parenti, F., Gallo, G.G. (1995). Biosynthesis and Genetics of Antibiotic Production. In: Antibiotics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9200-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9200-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9202-7

  • Online ISBN: 978-1-4757-9200-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics