Knowledge and Representation: The acquisition of knowledge in infancy

  • George E. Butterworth
Part of the Annals of Theoretical Psychology book series (AOTP, volume 10)


Theories of cognitive growth depend upon the assumptions about the origins of development on which they are founded. Jean Piaget’s theory, a representationalist realist account, is based on the assumption that development originates in a limited set of sensori-motor activities which progressively impose structure on experience. An alternative, presentationalist realist account, based on James Gibson’s theorising, can be supported by much recent evidence on infant perceptioa The assumption here is that development originates in the structured information available to perceptual systems. The evidence is reviewed in the context of the development of spatial knowledge during infancy. The relation between perception and action and mechanisms for the acquisition of concepts from perceptual data are considered in the light of contemporary selectionist approaches to categorisation and cognitive development.


Perceptual System Space Perception Hide Object Original Relation Optic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, J. M. (1901). Dictionary of Philosophy and Psychology. New York and London: Macmillan.Google Scholar
  2. Ball, W., & Tronick, E. (1971). Infant responses to impending collision: Optical and real. Science, 171, 818–820.PubMedCrossRefGoogle Scholar
  3. Banks, M., & Salapatek, P. (1983). Infant visual perception. In M. M. Haith & J. J. Campos (Eds.), Infancy and Developmental Psychobiology Handbook of Child Psychology Vol II (pp. 435–572). New York: Wiley.Google Scholar
  4. Bower, T. G. R. (1972). Object perception in infancy. Perception, 1, 15–30.PubMedCrossRefGoogle Scholar
  5. Bower, T. G. R. (1974, 2nd ed. 1982). Development in Infancy. San Francisco: Freeman.Google Scholar
  6. Bower, T. G. R., Broughton, J. M., & Moore, M. K. (1970). The coordination of visual and tactual input in infants. Perception and Psychophysics, 8, 51–53.CrossRefGoogle Scholar
  7. Bruner, J. S. (1966). On cognitive growth I and II. In J. S. Bruner, R. R. Olver, & R M. Greenfield (Eds.), Studies in cognitive growth (pp. 1–67). New York: Wiley.Google Scholar
  8. Butterworth, G. E. (1981). The origins of auditory-visual perception and visual proprioception in human development. In H. A. Pick, Jr. & R. Walk (Eds.), Perception and experience Vol. 2 (pp. 37–66). New York: Plenum.Google Scholar
  9. Butterworth, G. E. (1987). Events and encounters in infant perceptioa The New Psychologist 1986 (pp. 3–8). Reprinted in J. Oates & S. Sheldon (Eds.), Cognitive Development in Infancy (pp. 95–104). Hove: Lawrence Erlbaum.Google Scholar
  10. Butterworth, G. E., & Cicchetti, D. (1978). Visual calibration of posture in normal and motor retarded Down’s syndrome infants. Perception, 7, 513–525.PubMedCrossRefGoogle Scholar
  11. Butterworth, G.E., & Grover, L. (1988). The origins of referential communication in human infancy. In L. E. Weiskrantz(Ed.), Thought without language (pp. 5–24). Oxford: Clarendon Press.Google Scholar
  12. Butterworth, G.E., & Grover, L. (1989). Joint visual attention, manual pointing and pre-verbal communication in human infancy. In M. Jeannerod (Ed.), Attention and performance XIII. Hillsdale New Jersey: Lawrence Erlbaum (in press).Google Scholar
  13. Butterworth, G.E., & Hicks, L. (1977). Visual proprioception and postural stability in infancy: a devlopmental study. Perception, 6, 255–262.PubMedGoogle Scholar
  14. Carroll, J. J., & Gibson, E. J. (1981). Differentiation of an aperture from an obstacle under conditions of motion by three month old infants. Paper presented at a meeting of the Society for Research in Child Development, Boston.Google Scholar
  15. Castillo, M., & Butterworth, G. E. (1981). Neonatal localisation of a sound in visual space. Perception, 10, 331–338.PubMedCrossRefGoogle Scholar
  16. Changeux, J. P. (1985). Neuronal man. Oxford: Oxford University Press.Google Scholar
  17. Chomsky, N. (1980). Rules and representations. Oxford: Basil Blackwell.Google Scholar
  18. Cohen, L. B. (1988). An information processing approach to infant cognitive development. In L. E. Weiskrantz(Ed.), Thought without language (pp. 211–228). Oxford: Clarendon Press.Google Scholar
  19. Costali, A. P. (1981). How so much information controls so much behaviour. In G. E. Butterworth (Ed.), Infancy and Epistemology (pp.30–51). Brighton: Harvester.Google Scholar
  20. Diamond, A. (1988). Differences between adult and infant cognition; is the crucial variable presence or absence of language? In L. E. Weiskrantz(Ed.), Thought without language (pp. 337–380). Oxford: Oxford University Press.Google Scholar
  21. Edelman, G. M. (1987). Neural Darwinism: The theory of Neuronal Group Selection. New York: Basic Books.Google Scholar
  22. Edelman, G. M. (1988). Topobiology: An introduction to molecular embryology. New York: Basic Books.Google Scholar
  23. Furth, H. (1969). Piaget and Knowledge. London: Prentice Hall.Google Scholar
  24. Ghiselin M. (1981). Categories, life and thinking. Behavioural and Brain sciences, 4, 269–313.CrossRefGoogle Scholar
  25. Gibson, E. J., & Spelke, E. S. (1983). The development of perceptioa In J. Flavell & E. Markman (Eds.), Cognitive Development: Vol III, Handbook of Child Psychology (pp. 1–76). New York: Wiley.Google Scholar
  26. Gibson, E. J., & Walk, R. D. (1960). The visual cliff. Scientific American, 202, 64–71.PubMedCrossRefGoogle Scholar
  27. Gibson, E. J., & Walker, A. (1984). Development of knowledge of visualtactual affordances of substance. Child Development, 55, 453–460.PubMedCrossRefGoogle Scholar
  28. Gibson, J.J. (1966). The senses considered as perceptual systems. London: George Alland & UnwiaGoogle Scholar
  29. Granrud, C. E., Yonas, A., Smith, I. M., Arterberry, M. E., Glicksman, M. I., & Sorkness, A. C. (1984). Infants sensitivity to accretion and deletion of texture as information for depth at an edge. Child Development, 55, 1630–1636.PubMedCrossRefGoogle Scholar
  30. Gratch, G. A. (1972). A study of the relative dominance of vision and touch in six month old infants. Child Development, 43, 615–623.PubMedCrossRefGoogle Scholar
  31. Hein, A., & Diamond, R. (1983). Contribution of eye movements to the representation of space. In A. Hein & M. Jeannerod (Eds.), Spatially oriented behaviour (pp. 119–133). New York: Springer Verlag.CrossRefGoogle Scholar
  32. Held, R., & Hein, A. (1963). Movement produced stimulation in the development of visually guided behaviour. Journal of Comparative and Physiological Psychology, 56, 872–876.PubMedCrossRefGoogle Scholar
  33. Hofsten, C., von (1982). Eye-hand coordination in the newborn. Developmental Psychology, 18, 450–467.CrossRefGoogle Scholar
  34. Jarret, N. L. M. (1988). The development of detour problem solving in human infancy. Unpublished M. Sc. thesis; University of Southampton.Google Scholar
  35. Kellman, P. J., & Spelke, E. S. (1983). Perception of partly occluded objects in infancy. Cognitive Psychology, 15, 483–524.PubMedCrossRefGoogle Scholar
  36. Kelso, J. A., & Tuller, B. (1984). A dynamical base for action systems. In M. S. Gazzaniga (Ed.), Handbook of Cognitive Neuroscience (pp. 321–356). New York: Plenum.Google Scholar
  37. Kuhl, P., & Meltzoff, A. N. (1982). The bimodal perception of speech in infancy. Science, 218, 1138–1141.PubMedCrossRefGoogle Scholar
  38. Langer, J. (1986). The origins of logic: one to two years. New York: Academic Press.Google Scholar
  39. Landau, B., Gleitman, H., & Spelke, E. S. (1981). Geometric representation in a child blind from birth. Science, 213, 1275–1278.PubMedCrossRefGoogle Scholar
  40. Lee, D., & Aronson, E. (1974). Visual proprioceptive control of standing in human infants. Perception and Psychophysics, 15, 529–532.CrossRefGoogle Scholar
  41. Lee, D. N., & Lishman, J. R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87–95.Google Scholar
  42. Malcuit, G., Pomerleau, A., & Lamarre, G. (1988). Habituation, visual fixation and cognitive activity in infants: a critical analysis and attempt at a new formulation. Cahiers de Psychologie Cognitive, 8(5), 415–440.Google Scholar
  43. Mandler, J. M. (1983). Representatioa In P. H. Mussen, (Ed.), Handbook of child psychology Vol IV (pp. 420–494). New York: Wiley.Google Scholar
  44. Meltzoff, A. N., & Borton, R. W. (1979). Intermodal matching by human neonates. Nature, 282, 403–404.PubMedCrossRefGoogle Scholar
  45. Mounoud, P., & Vinter, A. (1981). Representation and sensori-motor development. In G. E. Butterworth (Ed.).Infancy and Epistemology: An Evaluation of Piaget’s Theory. (pp 200–235). Brighton: Harvester.Google Scholar
  46. Piaget, J. (1951). Play dreams and imitation in childhood. New York: Norton.Google Scholar
  47. Piaget, J. (1953). The origins of intelligence in the child. New York: International Universities Press.Google Scholar
  48. Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.CrossRefGoogle Scholar
  49. Pope, M. J. (1984). Visual proprioception in infant postural development. Unpublished Ph. D. Thesis, University of SouthamptoaGoogle Scholar
  50. Rader, N., Bausano, M., & Richards, J. E. (1980). On the nature of the visual cliff avoidance response in human infants. Child Development, 51, 61–68.PubMedCrossRefGoogle Scholar
  51. Reed, E. S., & Jones, R. (Eds.). (1982). Reasons for realism: Selected essays of J. J. Gibson, New Jersey: Lawrence Erlbaum.Google Scholar
  52. Reed, E. S. (1981a). The demise of mental representations. Behavioural and Brain Sciences, 4, 297–298.CrossRefGoogle Scholar
  53. Reed, E. S. (1981b). Can mental representations cause behaviour? Behavioural and brain sciences, 4, 635–636.CrossRefGoogle Scholar
  54. Reed, E. S. (1987). James Gibson’s ecological approach to cognitioa In A. P. Costali & A. Still (Eds.), Cognitive psychology in question (pp. 142–175). Brighton: Harvester.Google Scholar
  55. Spelke, E. S. (1983). Cognition in infancy. Occasional paper No. 23. Center for Cognitive Science: Massachussets Institute of Technology.Google Scholar
  56. Spelke, E. S. (1988). The origins of physical knowledge. In L. E. Weiskrantz (Ed.), Thought without language (pp. 168–184). Oxford: Clarendon Press.Google Scholar
  57. Streri, A., & Spelke, E. S. (1988). Haptic perception of objects in infancy. Cognitive Psychology, 20, 1–23.PubMedCrossRefGoogle Scholar
  58. Thelen, E. (1984). Learning to walk: ecological demands and phylogenetic constraints. In L. P. Lipsitt & C. Rovee-Collier (Eds.), Advances in Infancy Research Vol. III (pp.213–257). Norwood, NJ: Ablex.Google Scholar
  59. Vries, J. I. P., de, Visser, G. H. A., & Prechtl, H. F. R. (1984). Fetal motility in the first half of pregnancy. In H. F. R. Prediti (Ed.), Continuity of neural functions from prenatal to postnatal life (pp. 46–64). Spastics International Medical Publications.Google Scholar
  60. Weiskrantz, L. E. (1980). Varieties of residual experience. Quarterly Journal of Experimental Psychology, 32(3), 365–386.PubMedCrossRefGoogle Scholar
  61. Wertheimer, M. (1961). Psychomotor coordination of auditory and visual space at birth. Science, 134, 1692.PubMedCrossRefGoogle Scholar
  62. Yonas, A., & Granrud, C. E. (1985). Development of visual space perception in young infants. In J. Mehler & R. Fox (Eds.), Neonate Cognition: Beyond the buzzing blooming confusion (pp. 45–68). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • George E. Butterworth
    • 1
  1. 1.Department of PsychologyUniversity of StirlingStirlingScotland

Personalised recommendations