Early Response Genes in Endothelial Cells

  • Timothy Hla
Part of the NATO ASI Series book series (NSSA, volume 263)


The vascular endothelial cells initiate angiogenesis when stimulated by growth factors and cytokines. While the cellular activities of the angiogenic factors such as the fibroblast growth factors (FGF), tumor necrosis factor (TNFα) and type-β transforming growth factor are well-characterized, molecular mechanisms involved in the different phases of angiogenesis, namely, migration, proliferation and differentiation are not well-understood. Protein kinase-C pathway is involved in the regulation of angiogenesis because the tumor promoter phorbol myristic acetate (PMA) is a potent inhibitor of FGF-induced endothelial cell proliferation and an inducer of differentiation into capillary-like tubules. Because immediate-early (IE) genes have been shown to be involved in critical regulatory events, we have cloned and characterized PMA-inducible IE genes from human umbilical vein endothelial cells (HUVEC). Collagenase type-I and a novel gene termed edg-1 were isolated as abundant PMA-inducible transcripts. The structure of edg-1 suggests that it encodes a novel G-protein coupled receptor. Furthermore, an isotype of cyclooxygenase (Cox) enzyme, Cox-2, was also induced as an IE gene in HUVEC. The expression of immunoreactive Cox isotypes in vivo correlates with the angiogenesis that occurs in chronic inflammatory diseases such as rheumatoid arthritis (RA). Because prostaglandins induce inflammation and angiogenesis, exaggerated and persistent expression of the Cox-2 may be important in maintaining the inflammatory disease phenotype. Regulated induction of IE genes such as edg-1, collagenase type I and Cox-2 may be important in physiological events that require angiogenesis; however, exaggerated and dysregulated expression of IE genes may result in enhanced angiogenesis, a characteristic of chronic inflammatory diseases and solid tumor growth.


Rheumatoid Arthritis Human Umbilical Vein Endothelial Cell Phorbol Myristic Acetate Chronic Inflammatory Disease Human Umbilical Vein Endothelial Cell Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Folkman, J. and C. Haudenschild (1980) Nature 288, 551–556.Google Scholar
  2. 2.
    Folkman, J. (1985) Adv. Cancer Res. 43, 175–203.PubMedCrossRefGoogle Scholar
  3. 3.
    Maciag, T. et al. (1982) J. Cell Biol. 94, 511–520.PubMedCrossRefGoogle Scholar
  4. 4.
    Burgess, W.H. and T. Maciag (1989) Ann. Rev. Biochem. 58, 575–606.PubMedCrossRefGoogle Scholar
  5. 5.
    Norioka, K. et al. (1987) Biochem. Biophys. Res. Comm. 145, 969–975.PubMedCrossRefGoogle Scholar
  6. 6.
    Frater-Schröder, M. et al. (1987) Proc. Natl. Acad. Sci. USA 84, 5277–5281.PubMedCrossRefGoogle Scholar
  7. 7.
    Heimark, R. et al. (1986) Science 233, 1078–1080.PubMedCrossRefGoogle Scholar
  8. 8.
    Doctrow, S.R. and J. Folkman (1987) J. Cell Biol. 104, 679–687.PubMedCrossRefGoogle Scholar
  9. 9.
    Montesano, R. and Orci, L. (1985) Cell 42, 469–477.PubMedCrossRefGoogle Scholar
  10. 10.
    Lau, L. and Nathans, D. (1987) Proc. Natl. Acad. Sci., USA 84, 1182–1186.PubMedCrossRefGoogle Scholar
  11. 11.
    Herschman, R. (1991) Ann. Rev. Biochem. 60, 281–319.PubMedCrossRefGoogle Scholar
  12. 12.
    Riabowol, K.T. et al. (1988) Mol. Cell. Biol. 8, 1670–1676.PubMedGoogle Scholar
  13. 13.
    Cochran, B. H. et al. (1983) Cell 33, 939–947.PubMedCrossRefGoogle Scholar
  14. 14.
    Rollins, B. J. et al. (1988) Proc. Natl. Acad. Sci., USA 85, 3738–3742.PubMedCrossRefGoogle Scholar
  15. 15.
    Almendral, J.M. et al. (1988) Mol. Cell. Biol. 8, 2140–2148.PubMedGoogle Scholar
  16. 16.
    Hla, T. and Maciag, T. (1990) Biochem. Biophys. Res. Comm. 167, 637–643.Google Scholar
  17. 17.
    Sargent, T.D. and Dawid, I. (1983) Science 222, 135–139.PubMedCrossRefGoogle Scholar
  18. 18.
    Moscatelli, D. et al. (1980) Cell 20, 343–351.PubMedCrossRefGoogle Scholar
  19. 19.
    Montesano, R. et al. (1990) Cell 62, 435–445.PubMedCrossRefGoogle Scholar
  20. 20.
    Hla, T. and Maciag, T. (1990) J. Biol. Chem. 265, 9308–9313.PubMedGoogle Scholar
  21. 21.
    Lefkowitz, R.J. and Caron, M.G. (1988) J. Biol. Chem. 263, 4993–4996.PubMedGoogle Scholar
  22. 22.
    Murphy, P.M. and Tiffany, H.L. (1991) Science 253, 1280–1283.PubMedCrossRefGoogle Scholar
  23. 23.
    Julius, D. et al. (1989) Science 244, 1057–1062.PubMedCrossRefGoogle Scholar
  24. 24.
    Devreotes, P. (1989) Science 245, 1054–1058.PubMedCrossRefGoogle Scholar
  25. 25.
    Needleman, P. et al. (1986) Ann. Rev. Biochem. 55, 69–102.PubMedCrossRefGoogle Scholar
  26. 26.
    Ziche, M. et al. (1982) J. Natl. Cancer Inst. 69, 475–482.PubMedGoogle Scholar
  27. 27.
    DeWitt, D. and Smith, W.L. (1988) Proc. Natl. Acad. Sci., USA 85, 1412–1416.PubMedCrossRefGoogle Scholar
  28. 28.
    Xie, W. et al. (1991) Proc. Natl. Acad. Sci., USA 88, 2692–2696.PubMedCrossRefGoogle Scholar
  29. 29.
    Kujubu, D. et al. (1991) J. Biol. Chem. 266, 12866–12872.PubMedGoogle Scholar
  30. 30.
    Hla, T. and Neilson, K. (1992) Proc. Natl. Acad. Sci., USA 89, 7384–7388.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimokawa, T. and Smith, W.L. (1991) J. Biol. Chem. 266, 6168–6173.PubMedGoogle Scholar
  32. 32.
    Hla, T. and Maciag, T. (1991) J. Biol. Chem. 266, 24059–24063.PubMedGoogle Scholar
  33. 33.
    Harris, E.D. (1990) New Eng. Jour. Med. 322, 1277–1289.CrossRefGoogle Scholar
  34. 34.
    Sano, H. et al. (1992) J. Clin. Invest. 89, 97–108.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Timothy Hla
    • 1
  1. 1.Department of Molecular Biology Holland LaboratoryAmerican Red CrossRockvilleUSA

Personalised recommendations