Endothelial Cell Heterogeneity and Organ — Specificity

  • Peter I. Lelkes
  • Vangelis G. Manolopoulos
  • Dawn Chick
  • Brian R. Unsworth
Part of the NATO ASI Series book series (NSSA, volume 263)


Endothelial cell (EC) biology and physiology play a prominent role in studying angiogenesis, i.e. the establishment of new blood vessels from existing ones. According to current perceptions, major features of the angiogenic cascade involve mainly EC-related phenomena such as dissolution of the subendothelial basement membrane, migration of the EC, and formation of a new vessel lumen by establishing tight interendothelial cell contacts. Angiogenesis in vivo occurs primarily at the level of the microvasculature (capillaries, arterioles, venules) and yet most in vitro models have convincingly employed EC isolated from large vessels. Such seemingly discordant approaches raise the question whether EC derived from different vascular beds can be used interchangeably to study common “vascular” phenomena. Over the past few years a large body of experimental findings has been accumulated to the effect that “an EC is not an endothelial cell is not an endothelial cell”1. Rather, EC phenotypic and functional diversity is differentially regulated by a plethora of microenvironmental and/or hemodynamic cues.


Endothelial Cell Adenylyl Cyclase cAMP Level Cholera Toxin Capillary Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lelkes, P.I. 1991. New aspects of endothelial cell biology. J. Cell. Biochem. 45: 242–244.PubMedCrossRefGoogle Scholar
  2. 2.
    Simionescu, N. and M. Simionescu (eds). 1992. Endothelial cell dysfunctions. Plenum Press, New York, NY.Google Scholar
  3. 3.
    Noden, D.M. 1989. Embryonic origins and assembly of blood vessels. Am. Rev. Respir. Dis. 140: 1097–1103.PubMedCrossRefGoogle Scholar
  4. 4.
    Simionescu, N. and M. Simionescu. 1988. The cardiovascular system.In Cell and tissue biology: a textbook of histology. L. Weiss, editor. Urban & Schwarzenberg, Baltimore, MD. pp 353–400.Google Scholar
  5. 5.
    Bumbasirevic, V., G.D. Pappas, and R.P. Becker. 1990. Endocytosis of serum albumin-gold conjugates by microvascular endothelial cells in rat adrenal gland: regional differences between cortex and medulla. J. Submicrosc. Cytol. Pathol. 22: 135–145.PubMedGoogle Scholar
  6. 6.
    Repin, V.S., V.V. Dolgov, O.E. Zaikina, I.D. Novikov, A.S. Antonov,M.A. Nokolaeva, and V.N. Smirnov. 1984. Heterogeneity of endothelium in human aorta: a quantitative analysis by scanning electron microscopy. Atherosclerosis 50: 35–52.Google Scholar
  7. 7.
    McCarthy, S.A., I. Kuzu, K.C. Gatter, and R. Bicknell. 1991. Heterogeneity of the endothelial cell and its role in organ preference of tumor metastasis. Trends Pharmacol. Sci. 12: 462–467.PubMedCrossRefGoogle Scholar
  8. 8.
    Allsup, D.J. and M.R. Boarder. 1990. Comparison of P2 purinergic receptors of aortic endothelial cells with those of adrenal medulla: evidence for heterogeneity of receptor subtype and of inositol phosphate response. Mol. Pharmacol. 38: 84–91.Google Scholar
  9. 9.
    Bossu, J.L., a. Elhamdani, and A. Feltz. 1992. Voltage-dependent calcium entry in confluent bovine capillary endothelial cells. FEBS Let. 299 (3): 239–242.CrossRefGoogle Scholar
  10. 10.
    Homma, S., Y. Miyauchi, Y. Sugishita, K. Goto, M. Sato, and N. Ohshima. 1992. Vasoconstrictor effects of endothelin-1 on myocardium microcirculation studied by the Langendorff perfusion method: differential sensitivities among microvessels. Microvasc. Res. 43: 205–217.PubMedCrossRefGoogle Scholar
  11. 11.
    Speiser, W., E. Anders, K.T. Preissner, O. Wagner, and G. Muller-Berghaus. 1987. Differences in coagulant and fibrinolytic activities of cultured human endothelial cells derived from omental tissue microvessels and umbilical veins. Blood 69: 964–967.PubMedGoogle Scholar
  12. 12.
    Zetter, B.R. 1988. Endothelial heterogeneity: influence of vessel size, organ localization, and species specificity on the properties of cultured endothelial cells. In Endothelial cells: volume II. U.S. Ryan, editor. CRC Press, Boca Raton, FL. pp 63–79.Google Scholar
  13. 13.
    Dupuy, E., A. Bikfalvi, F. Rendu, S.L. Toledano, and G. Tobelem. 1989. Thrombin mitogenic responses and protein phosphorylation are different in cultured human endothelial cells derived from large and microvessels. Exp. Cell. Res. 185: 363–372.PubMedCrossRefGoogle Scholar
  14. 14.
    Toda, N., T. Matsumoto, and K. Yoshida. 1992. Comparison of hypoxia-induced contraction in human, monkey and dog coronary arteries. Am. J. Physiol. 262: H678 - H683.PubMedGoogle Scholar
  15. 15.
    Nerem, R.M. and P.R. Girard. 1990. Hemodynamic influences on vascular endothelial biology. Toxic. Path. 18: 572–582.Google Scholar
  16. 16.
    Nollert, M.U., N.J. Panaro, and L.V. McIntire. 1992. Regulation of genetic expression in shear stress-stimulated endothelial cells. Ann. NYAcad. Sci. 665: 94–104.CrossRefGoogle Scholar
  17. 17.
    Lamontagne, D., U. Pohl, and R. Busse. 1992. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium-derived relaxing factor in the intact rabbit coronary vascular bed. Circ. Res. 70: 123–130.PubMedCrossRefGoogle Scholar
  18. 18.
    Malek, A. and S. Izumo. 1992. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol. 263: C389 - C396.PubMedGoogle Scholar
  19. 19.
    Diamond, S.L., S.G. Eskin, and L.V. McIntire. 1989. Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243: 1483–1485.PubMedCrossRefGoogle Scholar
  20. 20.
    Grabowski, E.F., E.A. Jaffe, and B.B. Weksler. 1985. Prostacyclin production by cultured endothelial cell monolayers exposed to step increases in shear stress. J. Lab. Clin. Med. 105: 36–43.PubMedGoogle Scholar
  21. 21.
    Sumpio, B.E.(ed.) 1993. Hemodynamic forces and vascular cell biology. R.G. Landes Company, Austin, TX.Google Scholar
  22. 22.
    Iba, T., S. Maitz, A. Vogt, O. Rosales, M. Widmann, and B.E. Sumpio. 1990. Alignment of human endothelial cells (EC) with cyclic stretch in vitro. FASEB J. A415. Abstract.Google Scholar
  23. 23.
    Spanel-Borowski, K. and J. van der Bosch. 1990. Different phenotypes of cultured microvessel endothelial cells obtained from bovine corpus luteum. Cell. Tissue. Res. 261: 35–47.PubMedCrossRefGoogle Scholar
  24. 24.
    Carley, W.W., M.J. Niedbala, and M.E. Gerritsen. 1992. Isolation, cultivation and partial characterization of microvascular endothelium derived from human lung. Am. J. Respir. Cell. Mol. Biol. 7: 620–630.PubMedCrossRefGoogle Scholar
  25. 25.
    Orlidge, A. and P.A. D’Amore. 1987. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105: 1455–1462.PubMedCrossRefGoogle Scholar
  26. 26.
    Tagami, M., K. Yamagata, H. Fujino, A. Kubota, Y. Nara, and Y. Yamori. 1992. Morphological differentiation of endothelial cells co-cultured with astrocytes on type-I or type-IV collagen. Cell. Tis. Res. 268: 225–232.CrossRefGoogle Scholar
  27. 27.
    Moisseiev, J., J.A. Jerdan, K. Dyer, A. Maglione, and B.M. Glaser. 1990. Retinal pigment epithelium cells can influence endothelial cell plasminogen activators. Invest. Ophthalmol. Vis. Sci. 31: 1070–1078.PubMedGoogle Scholar
  28. 28.
    Mizrachi, Y., J. Narranjo, B.-Z. Levi, H.B. Pollard, and P.I. Lelkes. 1990. PC12 cells differentiate into chromaffin cell like phenotype in co-culture with adrenal medullary endothelial cells. Proc. Natl. Acad. Sci. USA 87: 6161–6165.PubMedCrossRefGoogle Scholar
  29. 29.
    Lelkes, P.I. and B.R. Unsworth. 1992. Role of heterotypic interactions between endothelial cells and parenchymal cells in organospecific differentiation: a possible trigger of vasculogenesis. In Angiogenesis in health and disease. M.E. Maragoudakis, P. Gullino, and P.I. Lelkes, eds. Plenum Press, New York, NY. pp 27–43.CrossRefGoogle Scholar
  30. 30.
    Nishida, M.1 J.P. Springhorn, R.A. Kelly, and T.W. Smith. 1993. Cell-cell signaling between adult rat ventricular myocytes and cardiac microvascular endothelial cells in heterotypic primary culture. J. Clin. Invest. 91: 1934–1941.CrossRefGoogle Scholar
  31. 31.
    Youdim, M.B.H., D.K. Banerjee, K. Keiner, L. Offutt, and H.B. Pollard. 1989. Steroid regulation of monamine oxidase activity in the adrenal medulla. FASEB J. 3: 1753–1759.PubMedGoogle Scholar
  32. 32.
    Hart, T.K. and R.M. Pino. 1986. Pseudoislet vascularization: induction of diaphragm-fenestrated endothelia from the hepatic sinusoids. Lab. Invest. 54: 304–313.PubMedGoogle Scholar
  33. 33.
    Jaeger, C.B. 1991. Fenestration of cerebral microvessels induced by PC12 cells grafted to the brain of rats. Ann. IVY Acad. Sci. 361–364.Google Scholar
  34. 34.
    Saunder, K.B. and P.A. D’Amore. 1992. An in vitro model for cell-cell interactions. In Vitro Cell. Dev. Biol. 28A: 521–528.CrossRefGoogle Scholar
  35. 35.
    Alby, L. and R. Auerbach. 1984. Differential adhesion of tumor cells to capillary endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 81: 5739–5743.PubMedCrossRefGoogle Scholar
  36. 36.
    Berg, E.L., L.A. Goldstein, M.A. Jutila, M. Nakache, L.J. Picker, P.R. Streeter, N.W. Wu, D. Zhou, and E.C. Butcher. 1989. Homing receptors and vascular addressins: cell adhesion molecules that direct lymphocyte traffic. Immunol. Rev. 108: 5–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Lasky, L.A. 1991. Lectin cell adhesion molecules (LEC-CAMs): a new family of cell adhesion proteins involved with inflammation. J. Cell. Biochem. 45: 139–146.PubMedCrossRefGoogle Scholar
  38. 38.
    Pauli, B.U., H.G. Augustin-Voss, M.E. el-Sabbah, R.C. Johnson, and D.A. Hammer. 1990. Organ-preference of metastasis: the role of endothelial cell adhesion molecules. Cancer Metastasis Rev. 9: 175–189.PubMedCrossRefGoogle Scholar
  39. 39.
    Auerbach, R. 1991. Interactions between cancer cells and the endothelium. In Microcirculation in cancer metastasis. F.W. Orr, M. Buchanan, and L. Weiss, eds. CRC Press, Boca Raton, FL. pp 169–181.Google Scholar
  40. 40.
    Auerbach, R., L. Alby, L.W. Morrissey, M. Tu, and J. Joseph. 1985. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 29: 401–411.PubMedCrossRefGoogle Scholar
  41. 41.
    Risau, W., R. Hallmann, U. Albrecht, and S. Henke-Fahle. 1986. Brain induces the expression of an early cell surface marker for blood-brain barrier-specific endothelium. EMBO J. 1: 3179–3183.Google Scholar
  42. 42.
    Pauli, B.U. and C.L. Lee. 1988. Organ preference of metastasis: the role of organ-specifically modulated endothelial cells. Lab. Invest. 58: 379–387.PubMedGoogle Scholar
  43. 43.
    Augustin-Voss, H.G., R.C. Johnson, and B.U. Pauli. 1991. Modulation of endothelial cell surface glycoconjugate expression by organ-derived biomatrices. Exp. Cell Res. 192: 346–351.PubMedCrossRefGoogle Scholar
  44. 44.
    Plendl, J., L. Hartwell, and R. Auerbach. 1993. Organ-specific change in Dolichos biflorus lectin binding by myocardial endothelial cells during in vitro cultivation. In Vitro Cell. Dev. Biol. 29A: 25–3I.CrossRefGoogle Scholar
  45. 45.
    Madri, J.A., L. Bell, M. Marx, J.R. Merwin, C. Basson, and C. Prinz. 1991. Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: models of de-endothelialization and repair. J. Cell. Biochem. 45: 123–130.PubMedCrossRefGoogle Scholar
  46. 46.
    Schubert, D. 1992. Collaborative interactions between growth factors and the extracellular matrix. Trends cell biol. 2: 63–66.PubMedCrossRefGoogle Scholar
  47. 47.
    Montesano, R. 1992. Regulation of angiogenesis in vitro. Eur. J. Clin. Invest. 22: 504–515.PubMedCrossRefGoogle Scholar
  48. 48.
    Folkman, J. and C. Haudenschild. 1980. Angiogenesis in vitro. Nature 288: 551–556.PubMedCrossRefGoogle Scholar
  49. 49.
    Montesano, R., L. Orci, and P. Vassalli. 1983. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. Cell Biol. 97: 1648–1652.CrossRefGoogle Scholar
  50. 50.
    Fournier, N. and C.J. Doillon. 1992. In vitro angiogenesis in fibrin matrices containing fibronectin or hyaluronic acid. Cell Biol. Int. Rep. 16: 1251–1263.PubMedCrossRefGoogle Scholar
  51. 51.
    Papadimitriou, E., B.R. Unsworth, M.E. Maragoudakis, and P.I. Lelkes. 1993. Time-course and quantitation of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium,in press.Google Scholar
  52. 52.
    Canfield, A.E., F.E. Wren, S.L. Schor, M.E. Grant, and A.M. Schor. 1992. Aortic endothelial cell heterogeneity in vitro. Lack of association between morphological phenotype and collagen biosynthesis. J. Cell Sci. 102: 807–814.PubMedGoogle Scholar
  53. 53.
    Grant, D.S., P.I. Lelkes, K. Fukuda, and H.K. Kleinman. 1991. Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A: 327–336.CrossRefGoogle Scholar
  54. 54.
    Nishida, M., W.M. Carley, M.E. Gerritsen, O. Ellingsen, R.A. Kelly, and T.W. Smith. 1993. Isolation and characterization of human and rat cardiac microvascular endothelial cells. Am. J. Physiol. 264: H639 - H652.PubMedGoogle Scholar
  55. 55.
    Carley, W.W., A.J. Milici, and J.A. Madri. 1988. Extracellular matrix specificity for the differentiation of capillary endothelial cells. Exp. Cell Res. 178: 426–434.PubMedCrossRefGoogle Scholar
  56. 56.
    Pepper, M.S., and R. Montesano. 1990. Proteolytic balance and capillary morphogenesis. Cell Differ. Dev. 32: 319–328PubMedCrossRefGoogle Scholar
  57. 57.
    Kinsella, J.L., D.S. Grant, B.S. Weeks, and H.K. Kleinman. 1992. Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, matrigel. Exp. Cell Res. 199: 56–62.PubMedCrossRefGoogle Scholar
  58. 58.
    Wright, P.S., D. Cross-Doersen, J.A. Miller, W.D. Jones, and A.J. Bitonti. 1992. Inhibition of angiogenesis in vitro and in ovo with an inhibitor of cellular protein kinases, MDL 27032. J. Cell. Physiol. 152: 448–457.PubMedCrossRefGoogle Scholar
  59. 59.
    Catravas, J.D., C.N. Gills, and U.S. Ryan (eds). 1989. Vascular endothelium: receptors and transduction mechanisms. Plenum Press, New York, NY.Google Scholar
  60. 60.
    Levitzki, A. 1988. From epinephrine to cyclic AMP. Science 241: 800–806.PubMedCrossRefGoogle Scholar
  61. 61.
    Shenolikar, S. 1988. Protein phosphorylation: hormones, drugs, and bioregulation. FASEB J. 2: 2753–2764.PubMedGoogle Scholar
  62. 62.
    Lee, K.A.W. 1991. Transcriptional regulation by cAMP. Curr. Opinion Cell Biol. 3: 953–959.PubMedCrossRefGoogle Scholar
  63. 63.
    Ishii, H., K. Kizaki, H. Uchiyama, S. Horie, and M. Kazama. 1990. Cyclic AMP increases thrombomodulin expression on membrane surface of cultured human umbilical vein endothelial cells. 7hromb. Res. 59: 841–850.CrossRefGoogle Scholar
  64. 64.
    Lybert, G. 1984. Intercellular signal mechanisms in induction of thromboplastin synthesis. Haemostasis 14: 393–399.Google Scholar
  65. 65.
    Haas, T.A., M.C. Bertomeu, E. Bastida, and M.R. Buchanan. 1990. Cyclic AMP regulation of triacylglycerol turnover, 13-hode synthesis and endothelial cell thrombogenicity. Biochem. Biophys. Acta 1051: 174–178.PubMedCrossRefGoogle Scholar
  66. 66.
    Santell, L. and E.G. Levin. 1988. Cyclic AMP potentiates phorbol ester stimulation of t-PA release and inhibits secretion of PA inhibitor-1 from human endothelial cells. J. Biol. Chem. 263: 16802–16808.PubMedGoogle Scholar
  67. 67.
    Leitman, D.C., R.P. Fiscus, and F. Murad. 1986. Forskolin, phosphodiesterase inhibitors and cyclic AMP analogs inhibit proliferation of cultured bovine aortic endothelial cells. J. Cell. Physiol. 127: 237–243.PubMedCrossRefGoogle Scholar
  68. 68.
    Davison, P.M. and M.A. Karasek. 1981. Human dermal microvascular endothelial cells in vitro: effect of cyclic AMP on cellular morphology and proliferation rate. J. Cell. Physiol. 106: 253–258.PubMedCrossRefGoogle Scholar
  69. 69.
    Manolopoulos, V.G. and P.I. Lelkes. 1993. Cyclic strain and forskolin differentially induce cAMP production in phenotypically diverse endothelial cells. Biochem. Biophys. Res. Commun. 191: 1379–1385.PubMedCrossRefGoogle Scholar
  70. 70.
    McEwan, J.R., H. Parsaee, D.C. LeFroy, and J. McDermot. 1990. Receptors linked to adenylate cyclase in endothelial cells. In The Endothelium: An Introduction to Current Research. J.B. Warren, editor. Wiley-Liss, Inc., 45–51.Google Scholar
  71. 71.
    Bacic, F., R.M. McCarron, S. Uematsu, and M. Spatz. 1992. Adrenergic receptors coupled to adenylate cyclase in human cerebromicrovascular endothelium. Metab. Brain Dis. 7 (3): 125–137.PubMedCrossRefGoogle Scholar
  72. 72.
    Manolopoulos, V.G., M.M. Samet, and P.I. Lelkes. 1993. Regulation of the adenylyl cyclase signalling system in various types of cultured endothelial cells. Submitted.Google Scholar
  73. 73.
    Hekimian, G., S. Cote, J.V. Sande, and J.M. Boeynaems. 1992. H2 receptor-mediated responses of aortic endothelial cells to histamine. Am. J. Physiol. 262: H220 - H224.PubMedGoogle Scholar
  74. 74.
    Takeda, T., Y. Yamashita, S. Shimazaki, and Y. Mitsui. 1992. Histamine decreases the permeability of an endothelial cell monolayer by stimulating cyclic AMP production through the H2-receptor. J. Cell. Sci. 101: 745–750.PubMedGoogle Scholar
  75. 75.
    Garcia, J.G.N., and V. Natarajan. 1992. Signal transduction in pulmonary endothelium (implications for lung vascular dysfunction). Chest 102: 592–607.PubMedCrossRefGoogle Scholar
  76. 76.
    Voyno-Yasenetskaya, T.A., V.A. Tkachuk, E.G. Cheknyova, M.P. Panchenko, G.Y. Grigiorian, R.J. Vavrek, J.M. Stewart, and U.S. Ryan. 1989. Guanine nucleotide-dependent, pertussis toxin-insensitive regulation of phosphoinositide turnover by bradykinin in bovine pulmonary artery endothelial cells. FASEB J. 3: 44–51.PubMedGoogle Scholar
  77. 77.
    Iyengar, R. 1993. Molecular and functional diversity of mammalian Gs-stimulated adenylyl cyclases. FASEB J. 7: 768–775.PubMedGoogle Scholar
  78. 78.
    Davies, P.F. and S.C. Tripathi. 1993. Mechanical stress mechanisms and the cell. Circ. Res. 72: 239–245.PubMedCrossRefGoogle Scholar
  79. 79.
    Letsou, G.V., O. Rosales, S. Maitz, A. Vogt, and B.E. Sumpio. 1990. Stimulation of adenylate cyclase activity in cultured endothelial cells subjected to cyclic stretch. J. Cardiovasc. Surg. 31: 634–639.Google Scholar
  80. 80.
    Iba, T., L Mills, and B.E. Sumpio. 1992. Intracellular cyclic AMP levels in endothelial cells subjected to cyclic strain in vitro. J. Surg. Res. 52: 625–630.PubMedCrossRefGoogle Scholar
  81. 81.
    Giembycz, M.A. 1992. Could isoenzyme-selective phosphodiesterase inhibitors render bronchodilator therapy redundant in the treatment of bronchial asthma Biochem. Pharmacol. 43: 2041–2051.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Vangelis G. Manolopoulos
    • 1
    • 2
  • Dawn Chick
    • 1
  • Brian R. Unsworth
    • 2
  1. 1.Dept. BiologyUniv. Wisconsin Med School, Milwaukee Clinical Campus, UniversityMilwaukeeUSA
  2. 2.MarquetteUSA

Personalised recommendations