Angiogenesis pp 239-244 | Cite as

Cellular and Molecular Mechanisms of Angiogenesis in the Brain

  • A. M. Tsanaclis
Part of the NATO ASI Series book series (NSSA, volume 263)


The formation of new capillaries occurs in a variety of normal and pathological conditions, which include embryo and organ development, wound healing, atherosclerosis and tumor growth. In embryogenesis and wound healing this process is well regulated and ceases when tissue repair or organ development is completed; in contrast, new vessels in the tumor stroma seems to be continuously induced by the growing tumor.


Vascular Endothelial Growth Factor Basic Fibroblast Growth Factor Capillary Endothelial Cell Brain Endothelial Cell Human Brain Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hobson, B.&Denekamp, J. — Endothelial cell proliferation in tumours and normal tissues; continuous labeling studies. Br. J. Cancer 1984; 49: 405.PubMedCrossRefGoogle Scholar
  2. 2.
    Bar, Th. — The vascular system of the cerebral cortex. Adv. Anat. Embryol. Cell Biol. 1980; 59: 1.CrossRefGoogle Scholar
  3. 3.
    Russell, D. & Rubinstein, L.J. — Pathology of Tumours of the Nervous System. Wilkins and Wilkinson, 1989, 5th ed.Google Scholar
  4. 4.
    Schweigerer, L.; Neufeld, G.; Friedman, J.; Abraham, J.A.; Fiddes, J.C.; Gospodarowicz, D. — Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 1987; 325: 257.PubMedCrossRefGoogle Scholar
  5. 5.
    Rifkin, D.B.&Moscatelli, D. — Recent developments in the cell biology of basic fibroblast growth factor. Cell Biol. 1989; 109: 1.CrossRefGoogle Scholar
  6. 6.
    Rogeli, S.; Weinberg, R.A.; Fanning, P.&Klagsbrun, M. — Characterization of tumors produced by signal peptide-basic fibroblast growth factor-transformed cells. J. Cell. Biochem. 1989; 39: 132.Google Scholar
  7. 7.
    Folkman, J.; Klagsbrun, M.; Sasse, J.; et al. — A heparin-binding angiogenic protein: basic fibroblast growth factor: is stored within the basement membrane. Am.J. Pathol. 1988; 130: 393.PubMedGoogle Scholar
  8. 8.
    Finkelstein, S.; Apostolides, P.J.; Cady, C.G., et al. — Increased basic fibroblast growth factor (bFGF) immunoreactivity at the site of focal wounds. Brain Res. 1988; 460: 253.CrossRefGoogle Scholar
  9. 9.
    Gonzalez, A.M.; Buscaglia, M.; Ong, M.&Baird, A. — Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membrane of diverse tissues. J. Cell Biol. 1990; 110: 751CrossRefGoogle Scholar
  10. 10.
    Brem, S.; Tsanaclis, A.M.C.; Gately, S., et al. — Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors. Cancer 1992; 70: 2673.Google Scholar
  11. 11.
    Bugler, A.; Amalric, F.&Prats, H. — Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol. Cell. Biol. 1991; 11: 573.PubMedGoogle Scholar
  12. 12.
    Baird, A.&Klagsbrun, M. — The fibroblast growth factor family. Cancer Cells 1991; 3: 239.PubMedGoogle Scholar
  13. 13.
    Kandel, J.; Bossy-Wetzel, E.; Radvanyi, F.; et al. — Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 1991; 66: 1095.PubMedCrossRefGoogle Scholar
  14. 14.
    Delli Bovi, P.; Curatova, A.; Kern, F., et al. — An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 1987; 50: 729.CrossRefGoogle Scholar
  15. 15.
    Vlodaysky, I.; Folkman, J.; Sullivan, R., et al. — Endothelial cell-derived bFGF synthesis nd deposition into subendothelial extracellular matrix. Proc. Natl. Acad. Sci. USA 1987; 84: 2292.Google Scholar
  16. 16.
    Gross, J.L.; Moscatelli, D.&Rifkin, D.B. — Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. Natl. Acad. Sci. USA 1983; 80: 2623.Google Scholar
  17. 17.
    Sato, R.&Rifkin, D.B. — Autocrine activity of basic fibroblast gorwth factor: regulation of endothelial cell movement, plasminogen activator synthesis and SNA synthesis. J.Cell Biol. 1988; 107: 1199.PubMedCrossRefGoogle Scholar
  18. 18.
    Laiho, M.&Kesji-Oja, J. — Growth factors in the regulation of pericellular proteolysis: a review. Cancer Res. 1989; 49: 2533.Google Scholar
  19. 19.
    Maragoudakis, M.E.; Panoutsakopoulou, M.&Sarmonika, M. — Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue Cell 1988; 20: 531.PubMedCrossRefGoogle Scholar
  20. 20.
    Rogister, B.; Leprince, P.; Pettmann, B.&Labourdette, G. — Brain basic fibroblast growth factor stimulates the release of plasminogen activators by newborn rat cultured astroglial cells. Neuroscience Letters 1988; 91: 321.PubMedCrossRefGoogle Scholar
  21. 21.
    Torelli, S.; Dell’Era, P.; Ennas, M.G. et al. — Basic fibroblast gorwth factor in neuronal cultures of human fetal brain. J. Neurosci.Res. 1990;Google Scholar
  22. 22.
    Presta, M.; Ennas, M.G.; Torelli, S. et al. — Synthesis of urokinase-type plasminogen activator and type-1 plaminogen activator inhibitor in neuronal cultures of human fetal brain: stimulation by phorbol ester. J. Neurochem. 1990; 55: 1647.PubMedCrossRefGoogle Scholar
  23. 23.
    Polverini, P.J.&Leibovich, S.J. — Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor associated macrophages. Lab. Invest. 1984; 51: 635.PubMedGoogle Scholar
  24. 24.
    Gately, S.; Tsanaclis, A.M.C.; Klagsbrun, M.&Brem, S. — Signal peptide-bFGF transfected cells acquire an invasive phenotype. Proc.Am.Ass.Cancer Res. 1992; 33: 62.Google Scholar
  25. 25.
    Lee, J.K.; Choi, B.; Sobel, R.A., et al. — Inhibition of growth and angiogenesis of human neurofibrosarcoma by heparin and hydorcortisone. J. Neurosurg. 1990; 73: 435.Google Scholar
  26. 26.
    Folkman, J.; Langer, R., Linhardt, R.J., et al. — Angiogenesis inhibition and tumor regression caused by heparin or a heparin frgment in the presence of cortisone. Science 1983; 221: 719.PubMedCrossRefGoogle Scholar
  27. 27.
    Brem, S.; Zagzag, D.; Tsanaclis, A.M.C. et al. — Inhibition of angiogenesis and tumor growth in the brain: suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am. J. Pathol. 1990; 137: 1121.PubMedGoogle Scholar
  28. 28.
    Brem, S.; Tsanaclis, A.M.C.; Zagzag, D. — Anticopper treatment inhibits pseudopodial protrusion and the invasive spread of 9L gliosarcoma cells in the rat brain. Neurosurgery 1990; 26: 391.PubMedCrossRefGoogle Scholar
  29. 29.
    Gagliardi, A.; Hadd, H.&Collins, D.C.- Inhibition of angiogenesis by suramin.Cancer Res. 1992; 5225.Google Scholar
  30. Baird, A.; Esch, F.; Mormède, P. et al. — Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues. Recent Prog.Horm.Res. 1986; 52: 5073.Google Scholar
  31. 30.
    Takano, S.; Gately, S.; Engerhardt, H.; Tsanaclis, A.M.C. et al. — Angiossuppression and antiproliferative action of suramin: agrowth factor antagonist. Growth Factors, Peptides and Receptors. T.W.Moody, ed., 1993.Google Scholar
  32. 31..Gospodarowicz, D. Abraham, J.A.&Schilling, J. — Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc. Natl. Acad. Sci. USA 1989; 86: 7311.CrossRefGoogle Scholar
  33. 32.
    Shweiki, D.; Itin, A; Soffer, D.&Keshet, E. — Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843.PubMedCrossRefGoogle Scholar
  34. 33.
    Berkman, R.A.; Merrill, J.J.; Reinhold, W.C. et al. — Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasma. J. Clin. Invest. 1993; 91: 153.PubMedCrossRefGoogle Scholar
  35. 34.
    Plate, K.H.; Breir, G.; Weich, R.A.&Risau, W. — Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. M. Tsanaclis
    • 1
  1. 1.Laboratory of Experimental NeuropathologyUniversity of São Paulo School of MedicineSão PauloBrasil

Personalised recommendations