Angiogenesis pp 171-181 | Cite as

Endothelial Plasminogen Activators and Matrix Metalloproteinases in Fibrinolysis and Local Proteolysis

  • Victor W. M. van Hinsbergh
  • Roeland Hanemaaijer
  • Pieter Koolwijk
Chapter
Part of the NATO ASI Series book series (NSSA, volume 263)

Abstract

Fibrin is a temporary matrix, which is formed after wounding of a blood vessel and when plasma leaks from blood vessels forming a fibrous exudate, often seen in areas of inflammation and in tumors.1 The fibrin matrix acts as a barrier preventing further blood loss, and provides a scaffolding in which new microvessels can infiltrate during wound healing. A proper timing of the outgrowth of microvessels, angiogenesis, as well as the subsequent (partial) disappearance of these vessels is essential to ensure adequate wound healing and to prevent the formation of scar tissue. It is generally believed that plasminogen activators play an important role in the migration of leukocytes and endothelial cells, and in the dissolution of the fibrin matrix.2,3 Plasminogen activators are serine proteases, which enzymatically convert the zymogen plasminogen into the active protease plasmin, the prime protease that degrades fibrin.

Keywords

Plasminogen Activator Human Endothelial Cell Fibrinolytic Activity Plasminogen Activator Inhibitor Type Plasminogen Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.F. Dvorak, J.A. Nagy, B. Berse, L.F. Brown, K.-T. Yeo, T.-K. Yeo, A.M. Dvorak, L. Van de Water, T.M. Sioussat, and D.R. Senger, Vascular Permeability factor, fibrin, and the pathogenesis of tumor stroma formation, Ann. N. Y. Acad. Sci. 667: 101 (1992).PubMedCrossRefGoogle Scholar
  2. 2.
    H.C. Kwaan, Tissue fibrinolytic activity studied by a histochemical method, Fed. Proc. 25: 52 (1966).PubMedGoogle Scholar
  3. 3.
    V.W.M. Van Hinsbergh, and P. Koolwijk, Production of Plasminogen Activators and Matrix Metalloproteinases by Endothelial Cells: Their Role in Fibrinolysis and Local Proteolysis, in: “Angiogenesis in Health and Disease,” M.E. Maragoudakis, P. Gullino, and P.I. Lelkes, eds., NATO ASI Series A Volume 227, Plenum Press, New York (1992).Google Scholar
  4. 4.
    V.W.M. Van Hinsbergh, Impact of endothelial activation on fibrinolysis and local proteolysis in tissue repair, Ann. N. Y. Acad. Sci. 667: 151 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    F. Bachmann, Fibrinolysis, in: “Thrombosis and Haemostasis 1987,” M. Verstraete, J. Vermylen, R. Lijnen, and J. Arnout, eds., Leuven University Press, Leuven (1987).Google Scholar
  6. 6.
    P. Wallén, Structure and Function of Tissue Plasminogen Activator and Urokinase, in: “Fundamental and Clinical Fibrinolysis,” P.J. Castellino, P.J. Gaffney, M.M. Samama, and A. Takada, eds., Elsevier, Amsterdam (1987).Google Scholar
  7. 7.
    E.D. Sprengers, and C. Kluft, Plasminogen activator inhibitors, Blood 69: 381 (1987).PubMedGoogle Scholar
  8. 8.
    E.K.O. Kruithof, Plasminogen activator inhibitor type 1: biochemical, biological and clinical aspects, Fibrinolysis 2, Supp1. 2: 59 (1988).Google Scholar
  9. 9.
    D.J. Loskutoff, Regulation of PAI-1 gene expression, Fibrinolysis 5: 197 (1991).Google Scholar
  10. 10.
    L.A. Miles, and E.F. Plow, Plasminogen receptors: ubiquitous sites for cellular regulation of fibrinolysis, Fibrinolysis 2: 61 (1988).Google Scholar
  11. 11.
    E.S. Bamathan, Characterization and regulation of the urokinase receptor on human endothelial cells, Fibrinolysis 6, Supp1. 1: 1 (1992).Google Scholar
  12. 12.
    W.E. Holmes, L. Nelles, H.R. Lijnen, and D. Collen, Primary structure of human aZ antiplasmin, a serine protease inhibitor (Serpin), J. Biol. Chem. 262: 1659 (1987).PubMedGoogle Scholar
  13. 13.
    A. Wohlwend, D. Belin, and J.-D. Vassalli, Plasminogen activator-specific inhibitors produced by human monocytes/macrophages, J. Exp. Med. 165: 320 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    L.A. Miles, E.G. Levin, J. Plescia, D. Collen, and E.F. Plow, Plasminogen receptors, urokinase receptors, and their modulation on human endothelial cells, Blood 72: 628 (1988).PubMedGoogle Scholar
  15. 15.
    R.L. Nachman, Thrombosis and atherogenesis: molecular connections. Blood 79: 1897 (1992).PubMedGoogle Scholar
  16. 16.
    K.A. Hajjar, The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen, J. Biol. Chem. 266: 21962 (1991).PubMedGoogle Scholar
  17. 17.
    A.L. Roldan, M.V. Cubellis, M.T. Masucci, N. Behrendt, L.R. Lund, K. Dane, E. Appella, and F. Blasi, Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J. 9: 467 (1990).PubMedGoogle Scholar
  18. 18.
    M. Plough, N. Behrendt, D. Leber, and K. Dane, Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator, Semin. Thrombos. Hemostas. 17: 183 (1992).CrossRefGoogle Scholar
  19. 19.
    L.A. Miles, G.M. Fless, E.G. Levin, A.M. Scanu, and E.F. Plow, A potential basis for the thrombotic risks associated with lipoprotein(a), Nature 339: 301 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    J. Kuiper, M. Otter, D.C. Rijken, and T.J.C. Van Berkel, Characterization of the interaction in vivo of tissue-type plasminogen activator with liver cells, J. Biol. Chem. 263: 18220 (1988).PubMedGoogle Scholar
  21. 21.
    K. Orth, E.L. Madison, M.-J. Gething, J.F. Sambrook, and J. Herz, Complexes of tissue-type plasminogen activator and its serpin inhibitor plasminogen-activator inhibitor type 1 are internalized by means of the low density lipoprotein receptor-related protein/aZ macroglobulin receptor, Proc. Natl. Acad. Sci. U.S.A. 89: 7422 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    G. Bu, S. Williams, D.K. Strickland, and A.L. Schwartz, Low density lipoprotein receptor-related protein/a2 macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator, Proc. Natl. Acad. Sci. U.S.A. 89: 7427 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    T.-C. Wun, and A. Capuano, Spontaneous fibrinolysis in whole human plasma. Identification of tissue activator-related protein as the major plasminogen activator causing spontaneous activity in vitro, J. Biol. Chem. 260: 5061 (1985).PubMedGoogle Scholar
  24. 24.
    J.J. Emeis, Regulation of the acute release of tissue-type plasminogen activator from the endothelium by coagulation activation products, Ann. N. Y. Acad. Sci. 667: 249 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    E.G. Levin, K.R. Marotti, and L. Santell, Protein kinase C and the stimulation of tissue plasminogen activator release from human endothelial cells. Dependence on the elevation of messenger RNA, J. Biol. Chem. 264: 16030 (1989).PubMedGoogle Scholar
  26. 26.
    T. Kooistra, P.J. Bosma, K. Toet, L.H. Cohen, M. Griffioen, E. Van den Berg, L. Le Clercq, and V.W.M. Van Hinsbergh, Role of protein kinase C and cyclic adenosine monophosphate in the regulation of tissue-type plasminogen activator, plasminogen activator inhibitor-1, and platelet-derived growth factor mRNA levels in human endothelial cells. Possible involvement of protooncogenes c-jun and c-fos, Arterioscler. Thrombos. 11: 1042 (1991).CrossRefGoogle Scholar
  27. 27.
    P. Feng, M. Ohlsson, and T. Ny, The structure of the TATA-less rat tissue-type plasminogen activator gene. Species-specific sequence divergences in the promoter predict differences in regulation of gene expression, J. Biol. Chem. 265: 2022 (1990).PubMedGoogle Scholar
  28. 28.
    J.J. Emeis, and T. Kooistra, Animal models and experimental procedures to study the synthesis and acute release of tissue-type plasminogen activator, Fibrinolysis 7, Supp1. 1: 31 (1993).Google Scholar
  29. 29.
    T. Kooistra, J.P. Opdenberg, K. Toet, H.F.J. Hendriks, R.M. Van den Hoogen, and J.J. Emeis, Stimulation of tissue-type plasminogen activators synthesis by retinoids in cultured human endothelial cells and rat tissues in vivo, Thromb. Haemostas. 65: 565 (1991).Google Scholar
  30. 30.
    E.A. Thompson, L. Nelles, and D. Collen, Effect of retinoic acid on the synthesis of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in human endothelial cells, Eur. J. Biochem. 201: 627 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    T. Kooistra, K. Toet, C. Kluft, P.F. Von Voigtlander, M.D. Ennis, J.W. Aiken, J.A. Boadt, and L.A. Erickson, Triazolobenzodiazepines: a new class of stimulators of tissue-type plasminogen activator synthesis in human endothelial cells, Biochem. Pharmacol. 45: in press (1993).Google Scholar
  32. 32.
    A.M. Van Bennekum, J.J. Emeis, T. Kooistra, and H.F.J. Hendriks, Modulation of tissue-type plasminogen activator by retinoids in rat plasma and tissues, Am. J. Physiol. 264: R931 (1993).PubMedGoogle Scholar
  33. 33.
    P.H.A. Quax, C.R. Van den Hoogen, J.H. Verheijen, T. Padró, R. Zeheb, T.D. Gelehrter, T.J.C. Van Berkel, J. Kuiper, and J.J. Emeis, Endotoxin induction of plasminogen activator in plasminogen activator inhibitor type 1 mRNA in rat tissues in vivo, J. Biol. Chem. 265: 15560 (1990).PubMedGoogle Scholar
  34. 34.
    M. Keeton, Y. Eguchi, M. Swadey, C. Ahn, and D. Loskutoff, Cellular localization of type 1 plasminogen activator inhibitor messenger RNA and protein in murine renal tissue, Am. J. Pathol. 142: 59 (1993).PubMedGoogle Scholar
  35. 35.
    A.F. Suffredini, P.C. Harpel, and J.E. Parrillo, Promotion and subsequent inhibition of plasminogen activation after administration of intravenous endotoxin to normal subjects, N. Engl. J. Med. 320: 1165 (1989)PubMedCrossRefGoogle Scholar
  36. 36.
    V.W.M. Van Hinsbergh, K.A. Bauer, T. Kooistra, C. Kluft, G. Dooijewaard, M.L. Sherman, and W. Nieuwenhuizen, Progess of fibrinolysis during tumor necrosis factor infusion in humans. Concomitant increase of tissue-type plasminogen activator, plasminogen activator inhibitor type-1, and fibrin(ogen) degradation products, Blood 76: 2284 (1990).PubMedGoogle Scholar
  37. 37.
    S.J.H. Van Deventer, H.R. Buller, J.W. Ten Cate, L.A. Aarden, E. Hack, and A. Sturk, Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways, Blood 76: 2520 (1990).PubMedGoogle Scholar
  38. 38.
    V.W.M. Van Hinsbergh, E.A. Van den Berg, W. Fiers, and G. Dooijewaard, Tumor necrosis factor induces the production urokinase-type plasminogen activator by human endothelial cells, Blood 75: 1991 (1990).Google Scholar
  39. 39.
    M.J. Niedbala, and M. Stein Picarella, Tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator mediated proteolysis of extracellular matrix and its antagonism by y-interferon, Blood 79: 678 (1992).PubMedGoogle Scholar
  40. 40.
    J.P. Quigley, L.I. Gold, R. Schwimmer, and L.M. Sullivan, Limited cleavage of cellular fibronectin by plasminogen activator purified from transformed cells, Proc. Natl. Acad. Sci. U.S.A. 84: 2776 (1987).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Pöllänen, K. Hedman, L.S. Nielsen, K. Dane, and A. Vaheri, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts, J. Cell Biol. 106: 87 (1988).PubMedCrossRefGoogle Scholar
  42. 42.
    D. Olson, J. Pöllänen, G. Heyer-Hansen, E. Renne, K. Sakaguchi, T.-C. Wun, E. Appella, K. Dane, and F. Blasi, Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor, J. Biol. Chem. 267: 9129 (1992).PubMedGoogle Scholar
  43. 43.
    A. Nykjær, C.M. Petersen, B. Moller, P.H. Jensen, S.K. Moestrup, T.L. Holtet, M. Etzerodt, H.C. Thegersen, M. Munch, P.A. Andreasen, and J. Glietnann, Purified a2 macroglobulin receptor/LDL receptor-related protein binds urokinase•plasminogen activator inhibitor type-1 complex. Evidence that the aZ macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes, J. Biol. Chem. 267: 14543 (1992).PubMedGoogle Scholar
  44. 44.
    D.J. Langer, A. Kuo, K. Kariko, M. Ahuja, B.D. Klugherz, K.M. Ivanics, J.A. Hoxie, W.V. Williams, B.T. Liang, D.B. Cines, and E.S. Barnathan, Regulation of the endothelial cell urokinase-type plasminogen activator receptor. Evidence for cyclic AMP-dependent and protein kinase C-dependent pathways, Circ. Res. 72: 330 (1993).PubMedCrossRefGoogle Scholar
  45. 45.
    P. Mignatti, R. Mazzieri, and D.B. Rifkin, Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor, J. Cell Biol. 113: 1193 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    M.S. Pepper, J.-D. Vassalli, R. Montesano, and L. Orci, Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells, J. Cell Biol. 105: 2535 (1981).CrossRefGoogle Scholar
  47. 47.
    M.S. Pepper, D. Belin, R. Montesano, L. Orci, and J.-D. Vassalli, Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro, J. Cell Biol. 111: 743 (1990).PubMedCrossRefGoogle Scholar
  48. 48.
    R. Montesano, Regulation of angiogenesis in vitro. Eur. J. Clin. Invest. 22: 504 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    M.S. Pepper, N. Ferrara, L. Orci, and R. Montesano, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun. 189: 824 (1992).PubMedCrossRefGoogle Scholar
  50. 50.
    E. Bacharach, A. Itin, and E. Keshet, In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. U.S.A. 89:10686 (1992).PubMedCrossRefGoogle Scholar
  51. 51.
    L.M. Matrisian, The matrix-degrading metalloproteinases, BioEssays 14: 455 (1992).Google Scholar
  52. 52.
    G. Murphy, S. Atkinson, R. Ward, J. Gavrilovic, and J.J. Reynolds, The role of plasminogen activators in the regulation of connective tissue metalloproteinases, Ann. N. Y. Acad. Sci. 667: 1 (1992).PubMedCrossRefGoogle Scholar
  53. 53.
    L.A. Liotta, P.S. Steeg, and W.G. Stetler-Stevenson, Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation, Cell 64: 327 (1991).PubMedCrossRefGoogle Scholar
  54. 54.
    A.J.P. Docherty, and G. Murphy, The tissue metalloproteinase family and the inhibitor TIMP: a study using cDNAs and recombinant proteins, Ann. Rheumatic Diseases 49: 469 (1990).Google Scholar
  55. 55.
    R. Hanemaaijer, P. Koolwijk, L. Le Clercq, W.J.A. De Vree, and V.W.M. Van Hinsbergh, Regulation of matrix-degrading metalloproteinases (MMPs) expression in human vein and microvascular endothelial cells. Effects of TNFa, IL-1 and phorbol ester, Biochem. J. submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Victor W. M. van Hinsbergh
    • 1
  • Roeland Hanemaaijer
    • 1
  • Pieter Koolwijk
    • 1
  1. 1.Gaubius Laboratory IVVO-TNOLeidenThe Netherlands

Personalised recommendations