Angiogenesis pp 135-141 | Cite as

Basement Membrane Laminin-Derived Peptide Sikvav Promotes Angiogenesis and Tumor Growth

  • Hynda K. Kleinman
  • Derrick S. Grant
  • Maura C. Kibbey
Part of the NATO ASI Series book series (NSSA, volume 263)


The basement membrane is a thin extracellular matrix which underlies endothelial cells in vessels and forms a barrier to the passage of macromolecules and cells (Martin et al, 1988). Basement membranes also provide structural support and are very biologically active (Kleinman et al, 1987; Beck et al, 1990). The major and constant components of basement membranes include laminin, collagen IV, entactin, heparan sulfate proteoglycan and various growth factors (Martin et al, 1988; Vukicevic et al, 1992). These components interact with each other to form a highly elastic and organized structure.


Basement Membrane Melanoma Cell Neurite Outgrowth Basement Membrane Component Avian Malaria Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barsky, L.H., Rao, C.N., Williams, J.E., and Liotta, L.A. (1984) Laminin molecular domains which alter metastasis in a murine model. J. Clin. Invest. 74: 843–848.Google Scholar
  2. Beck, K., Hunter, I., and Engel, J. (1990) Structure and function of laminin: Anatomy of a multidomain protein. FASEB J. 4: 148–160.Google Scholar
  3. Benson, S., and Chuppa, S. (1990) Differentiation in vitro of sea urchin micromeres on extracellular matrix in the absence of serum. J. Exp. Zool. 256: 222–226.Google Scholar
  4. Grant, D.S., Kinsella, J.L., Fridman, R., Auerbach, R., Piasecki, B. A., Yamada, Y., Zain, M., and Kleinman, H.K. (1992) Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J. Cellul. Physiol. 153: 614–625.Google Scholar
  5. Grant, D.S., Tashiro, K.-I., Segui-Real, B., Yamada, Y., Martin, G.R., and Kleinman, H.K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vivo. Cell 58: 933–934.PubMedCrossRefGoogle Scholar
  6. Haber, S., Finklestein, S.D., Benowitz, L.I., Sladek, J.R., and Collier, T.J. (1988) Matrigel enhances survival and integration of grafted dopamine neurons into striatum. In: ‘Progress in Brain Research“ ( D.M. Gash and J.R. Sladek, Jr., Eds.), Vol. 78, pp. 427–433. Elsevier, New York.Google Scholar
  7. Joshi, M.S. (1991) Growth and differentiation of the cultured secretory cells of the cow oviduct on reconstituted basement membrane. J. Exp. Zool. 260: 229–238.Google Scholar
  8. Jun, S.H., Thompson, E.W., Goltardis, M., Torri, J., Yamamura, K., Kibbey, M.C., Kim, W.H., and Kleinman, H.K. (1993) Laminin adhesion selected primary human colon cancer cells are more tumorigenic than the parental and non-adherent cells. Int. J. Cancer, Submitted.Google Scholar
  9. Kanemoto, T., Reich, R., Greatorex, D., Adler, S.H., Yamada, Y., and Kleinman, H.K. (1990) Identification of an amino acid sequence from the laminin A chain which stimulates metastases formation and collagenase IV production. Proc. Natl. Acad. Sci. USA 87: 2279–2283.Google Scholar
  10. Kibbey, M.C., Grant, D.S., and Kleinman, H.K. (1992a) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: An in vivo Matrigel model. J. Natl. Cancer Inst. 84: 1633–1638.Google Scholar
  11. Kibbey, M.C., Royce, L.S., Dym, M.S., Baum, B.J., and Kleinman, H.K. (1992b) Glandular-like morphogenesis of the human submandibular tumor cell line A253 on basement membrane components. Exp. Cell Res. 198: 343–357.Google Scholar
  12. Kleinman, H.K., Graf, J., Iwamoto, Y., Kitten, G.T., Ogle, R.D., Sasaki, M., Yamada, Y., Martin, G.R., and Luckenbill-Edds, L. (1987) Role of basement membrane, In: Differentiation in Molecular and Cellular Aspects of Basement Membranes, Ed: R. Timpl and D.G. Rohrbach, pp. 309–326.Google Scholar
  13. Kleinman, H.K., McGarvey, M.L., Hassell, J.R., Star, V.L., Cannon, F.B., Laurie, G.W., and Martin, G.R. (1986) Basement membrane complexes with biological activity. Biochemistry 25: 312–318.PubMedCrossRefGoogle Scholar
  14. Kleinman, H.K., Weeks, B.S., Schnaper, H.W., Kibbey, M.C., Yamamura, K., and Grant, D.S. (1993) The laminins: A family of basement membrane glycoproteins important in cell differentiation and tumor metastases. Vitamins and Hormones 47: 161–186.Google Scholar
  15. Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell. Biol. 107: 1589–1598.Google Scholar
  16. Martin, G.R., Timpl, R., and Kuhn, K., (1988) Basement membrane proteins: Molecular structure and function. 39: 1–50.Google Scholar
  17. McGarvey, M.L., Baron van Evercooren, A., Kleinman, H.K., and DuBois-Dalcq, M. (1986) Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev. Biol. 105: 18–28.Google Scholar
  18. Panayotou, G., End, P., Aumailley, M., Timpl, R., and Engel, J. (1989) Domains of laminin with growth-factor activity. Cell 56: 93–101.PubMedCrossRefGoogle Scholar
  19. Passanti. A., Taylor, R.M., Pili, R., Guo, Y, Long, P.V., Haney, J.A., Pauly, R.R., Grant, D.S., and Martin, G.R. (1992). A new quantative method for assessing angiogenesis and antiangiogenesis using reconstructed basement membrane, heparin and FGF. Lab. Invest. 67: 519–528.Google Scholar
  20. Tashiro, K., Sephel, G.C., Weeks, B., Sasaki, M., Martin, G.R., Kleinman, H.K., and Yamada, Y. (1989) A synthetic peptide containing IKVAV sequence in the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 264: 16174–16182.Google Scholar
  21. Sakamoto, N., Iwahana, M., Tanaka, N.G., and Osada, Y. (1991) Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide CDPGYIGSR-NH2 Cancer Res. 51, 903–906.Google Scholar
  22. Schnaper, W.H., Grant, D.S., Stetler-Stevenson, W.G., Fridman, R., O’Orazi, G., Bird, B.E., Hoythya, M., Fuerst, T.R., French, D.L., Quigley, J.P., and Kleinman, H.K. (1993) Type IV collagenase activity promotes endothelial cell formation into capillary-like structures on basement membrane in vitro. J. Cell. Physiol., in press.Google Scholar
  23. Stack, S., Gray, R.D., and Pizzo, S.V. (1990) Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A Chain. Biochemistry 30: 2073–2077.CrossRefGoogle Scholar
  24. Suarez-Quian, C.A., Hadley, M.A., and Dym, M. (1985) Effects of substrate on the shape of Sertoli cells in vitro. Ann. NY Acad. Sci. 438: 417–434.Google Scholar
  25. Sweeney, T.M., Kibbey, M.C., Zain, M., Fridman, R., and Kleinman, H.K. (1991) Basement membrane and the laminin peptide containing SIKVAV promotes tumor growth and metastases. Cancer Metast. Rev. 10: 245–254.Google Scholar
  26. Thompson, J.S. (1990) Basement membrane components stimulate epithelialization of intestinal defects in vivo. Cell Tissue Kinet. 23: 443–451.PubMedGoogle Scholar
  27. Terranova, V.P., Williams, J.E., Liotta, L.A., and Martin, G.R. (1984) Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226: 982–985.PubMedCrossRefGoogle Scholar
  28. Turpeeniemi-Hujanen, T., Thorgeisson, U.P., Rao, C.N., and Liotta, L.A. (1986) Laminin increases the release of type IV collagenase. J. Biol. Chem. 261: 1883–1889.Google Scholar
  29. Vukicevic, S., Kleinman, H.K., Luyten, F.P., Roberts, A.B., Roche, N.S., and Reddi, A.H. (1992) Identification of multiple growth factors in basement membrane matrigel suggests caution in interpretations of cellular activity related to extracellular matrix components. Exp. Cell Res. 202: 1–8.Google Scholar
  30. Warburg, A. and Mille, L.H. (1992) Sporogonic development of a malaria parasite in vitro. Science 255: 448–450.PubMedCrossRefGoogle Scholar
  31. Wewer, U.M., Liotta, L.A., Jaye, M., Ricca, G.A., Drohan, W.N., Slaysmith, A.O., Rao, C.N., Wirth, P., Coligan, J.E., Albrechtsen, R., Mudry, M., and Sobel, M.E. (1986) Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc. Natl. Acad. Sci. U.S.A. 83: 7137–7141.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Hynda K. Kleinman
    • 1
  • Derrick S. Grant
    • 1
  • Maura C. Kibbey
    • 1
  1. 1.National Institute for Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations