Angiogenesis pp 459-473 | Cite as

Mapping Neovascularization and Antineovascularization Therapy

  • Michal Neeman
  • Gila Meir
  • Catherine Tempel
  • Yael Schiffenbauer
  • Rinat Abramovitch
Part of the NATO ASI Series book series (NSSA, volume 298)


The switch of tumors from avascular to the vascular phase and the onset of tumor angiogenesis mark a critical checkpoint in tumor progression. Avascular tumor dormancy can sometimes extend over many years, while upon vascularization, tumors show increased invasiveness, elevated metastatic potential and significantly worse prognosis (Weidner and Folkman, 1996). Regulation of the transition to the vascular phase depends on the balance between the production of promoters and inhibitors of angiogenesis (Hanahan and Folkman, 1996). The goal of our work was to define physiological scenarios which perturb this balance and can thus drive angiogenesis to previously dormant tumors. Such mechanisms that promote angiogenesis may explain epidemiological observations regarding age specific probabilities of certain tumors, environmental effects and the effects of trauma on tumor growth. In order to follow angiogenesis quantitatively, we developed an experimental system that relies on detection of vessel density by magnetic resonance imaging (MRI).


Vascular Endothelial Growth Factor Expression Angiogenic Growth Factor Angiogenic Switch Multicellular Spheroid Multicellular Tumor Spheroid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovitch, R., Marikovsky, M., Meir, G. and Neeman, M., 1996, Direct and indirect mechanisms for acceleration of tumor growth by wounds: NMR studies of implanted C6 glioma spheroids, in: ISMRM, Vol. 1. pp. 369: New York.Google Scholar
  2. Abramovitch, R., Meir, G. and Neeman, M., 1995, Neovascularization induced growth of implanted C6 glioma multicellular spheroids: magnetic resonance microimaging. Cancer Res. 55: 1956–1962.PubMedGoogle Scholar
  3. Acker, H., Carlsson, J., Mueller Klieser, W. and Sutherland, R. M., 1987, Comparative pO2 measurements in cell spheroids cultured with different techniques. Br J Cancer. 56: 325–327.PubMedCrossRefGoogle Scholar
  4. Borgstrom, P., Hillan, K. J., Sriramarao, P. and Ferrara, N., 1996, Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 56: 4032–4039.PubMedGoogle Scholar
  5. Bouck, N., 1996, P53 and angiogenesis. Biochim Biophys Acta. 1287: 63–66.PubMedGoogle Scholar
  6. Boxerman, J. L., Hamberg, L. M., Rosen, B. R. and Weisskoff, R. M., 1995, MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 34: 555–566.PubMedCrossRefGoogle Scholar
  7. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., Fahrig, M., Vandenhoeck, A., Harpal, K., Eberhardt, C., Declercq, C., Pawling, J., Moons, L., Collen, D., Risau, W. and Nagy, A., 1996, Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 380: 435–439.PubMedCrossRefGoogle Scholar
  8. Casciari, J. J., Sotirchos, S. V. and Sutherland, R. M., 1988, Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 48: 3905–3909.PubMedGoogle Scholar
  9. Dameron, K. M., Volpert, O. V., Tainsky, M. A. and Bouck, N., 1994, Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 265: 1582–1584.PubMedCrossRefGoogle Scholar
  10. Farrell, C. L., Stewart, P. A. and Del Maestro, R. F., 1987, A new glioma model in rat: the C6 spheroid implantation technique permeability and vascular characterization. J Neurooncol. 4: 403–415.PubMedCrossRefGoogle Scholar
  11. Ferrara, N., Carver Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell Braxton, L., Hillan, K. J. and Moore, M. W., 1996, Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 380: 439–442.PubMedCrossRefGoogle Scholar
  12. Hanahan, D. and Folkman, J., 1996, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353–364.PubMedCrossRefGoogle Scholar
  13. Hellerqvist, C. G., Thurman, G. B., Page, D. L., Wang, Y. F., Russell, B. A., Montgomery, C. A. and Sundell, H. W., 1993, Antitumor effects of GBS toxin: a polysaccharide exotoxin from group B beta-hemolytic streptococcus. J Cancer Res Clin Oncol. 120: 63–70.PubMedCrossRefGoogle Scholar
  14. Karczmar, G. S., River, J. N., Li, J., Vijayakumar, S., Goldman, Z. and Lewis, M. Z., 1994, Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumours. NMR Biomed. 7: 3–11.PubMedCrossRefGoogle Scholar
  15. Morales, D. E., McGowan, K. A., Grant, D. S., Maheshwari, S., Bhartiya, D., Cid, M. C., Kleinman, H. K. and Schnaper, H. W., 1995, Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation. 91: 755–763.PubMedCrossRefGoogle Scholar
  16. Mueller Klieser, W. and Sutherland, R. M., 1983, Frequency distribution histograms of oxygen tensions in multicell spheroids. Adv Exp Med Biol. 159: 497–508.PubMedCrossRefGoogle Scholar
  17. Neeman, M., Abramovitch, R., Schiffenbauer, Y. and Tempel, C., 1997, Regulation of angiogenesis by hypoxic stress: from solid tumours to the ovarian follicle. Int J Exp Pathol. 78 In press.Google Scholar
  18. Neeman, M., Jarrett, K. A., Sillerud, L. O. and Freyer, J. P., 1991, Self-diffusion of water in multicellular spheroids measured by magnetic resonance microimaging. Cancer Res. 51: 4072–4079.PubMedGoogle Scholar
  19. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R. and Folkman, J., 1997, Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88: 277–285.PubMedCrossRefGoogle Scholar
  20. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H. and Folkman, J., 1994, Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328.PubMedCrossRefGoogle Scholar
  21. Ogawa, S., Lee, T. M., Kay, A. R. and Tank, D. W., 1990a, Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87: 9868–9872.PubMedCrossRefGoogle Scholar
  22. Ogawa, S., Lee, T. M., Nayak, A. S. and Glynn, P., 1990b, Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 14: 68–78.PubMedCrossRefGoogle Scholar
  23. Quinn, T. E., Thurman, G. B., Sundell, A. K., Zhang, M. and Hellerqvist, C. G., 1995, CM101, a polysaccharide antitumor agent, does not inhibit wound healing in murine models. J Cancer Res Clin Oncol 121: 253–256.PubMedCrossRefGoogle Scholar
  24. Robinson, S. P., Howe, F. A. and Griffiths, J. R., 1995, Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Bio Phys. 33: 855–859.CrossRefGoogle Scholar
  25. Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., Keshet, E. and Neeman, M., 1996, Gonadotropin contribution to the angiogenic potential of MLS spheroids. 31P NMR spectroscopy and MR microscopy, in: ISMRM, Vol. 1. pp. 371: New York.Google Scholar
  26. Shweiki, D., Itin, A., Soffer, D. and Keshet, E., 1992, Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359: 843–845.PubMedCrossRefGoogle Scholar
  27. Shweiki, D., Neeman, M., Itin, A. and Keshet, E., 1995, Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implications for tumor angiogenesis. Proc Natl Acad Sci USA. 92: 768–772.PubMedCrossRefGoogle Scholar
  28. Stein, I., Neeman, M., Shweiki, D., Itin, A. and Keshet, E., 1995, Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol. 15: 5363–5368.PubMedGoogle Scholar
  29. Sutherland, R. M., 1988, Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 240: 177–184.PubMedCrossRefGoogle Scholar
  30. Tempel, C., Meir, G. and Neeman, M., 1997, Modulation of blood flow in the preovulatory rat ovarian follicle, in: ISMRM, Vol. 2. pp. 986: Vancouver.Google Scholar
  31. Tempel, C., Schiffenbauer, Y. S., Meir, G. and Neeman, M., 1995, Modulation of water diffusion during gonadotropin-induced ovulation: NMR microscopy of the ovarian follicle. Magn Reson Med. 34: 213–218.PubMedCrossRefGoogle Scholar
  32. Thurman, G. B., Page, D. L., Wamil, B. D., Wilkinson, L. E., Kasami, M. and Hellerqvist, C. G., 1996, Acute inflammatory changes in subcutaneous microtumors in the ears of mice induced by intravenous CM101 (GBS toxin). J Cancer Res Clin Oncol 122: 549–553.PubMedCrossRefGoogle Scholar
  33. Thurman, G. B., Russel, B. A., York, G. E., Wang, Y. F., Page, D. L., Sundell, H. W. and Hellerqvist, C. G., 1994, Effects of group B Streptococcus toxin on long-term survival of mice bearing transplanted Madison lung tumors. J Cancer Res Clin Oncol 120: 479–484.PubMedCrossRefGoogle Scholar
  34. Torres Filho, I. P., Hartley Asp, B. and Borgstrom, P., 1995, Quantitative angiogenesis in a syngeneic tumor spheroid model. Microvasc Res. 49: 212–226.PubMedCrossRefGoogle Scholar
  35. Waleh, N. S., Brody, M. D., Knapp, M. A., Mendonca, H. L., Lord, E. M., Koch, C. J., Laderoute, K. R. and Sutherland, R. M., 1995, Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res. 55: 6222–6226.PubMedGoogle Scholar
  36. Wamil, B. D., Thurman, G. B., Sundell, H. W., DeVore, R. F., Wakefield, G., Johnson, D. H., Wang, Y. F. and Hellerqvist, C. G., 1997, Soluble E-selectin in cancer patients as a marker of the therapeutic efficacy of CM101, a tumor-inhibiting anti-neovascularization agent, evaluated in phase I clinical trial. J Cancer Res Clin Oncol. 123: 173–179.PubMedCrossRefGoogle Scholar
  37. Weidner, N. and Folkman, J., 1996, Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncoll 167–190.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Michal Neeman
    • 1
  • Gila Meir
    • 1
  • Catherine Tempel
    • 1
  • Yael Schiffenbauer
    • 1
  • Rinat Abramovitch
    • 1
  1. 1.Department of Biological RegulationThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations