Angiogenesis pp 429-447 | Cite as

The Vascularization of Experimental and Human Primary Tumors: Comparative Morphometric and Morphologic Studies

  • M. A. Konerding
  • E. Fait
  • A. Gaumann
  • Ch. Dimitropoulou
  • W. Malkusch
Chapter
Part of the NATO ASI Series book series (NSSA, volume 298)

Abstract

The importance of the blood vessel system in solid tumors has given rise to an increasing interest in this system as a direct target for tumor therapy, i.e. vascular targeting (Denekamp, 1984). Furthermore, its importance as a route for delivery of anticancer drugs (chemo- and immunotherapies) or photosensitizers (photodynamic laser therapy), as well as its modulatory influences on radiotherapy and hyperthermia — the former greatly depending on the amount of oxygen available, the latter on heat transfer — are evident. Numerous studies on the energy metabolism of solid tumors (Vaupel et al., 1987, 1989) have pointed out the functional importance of the blood vessel system and stress the need for further thorough investigations of its functions in terms of transport capacities for nutrients, oxygen, catabolite removal, delivery of therapeutic substances, and heat transfer.

Keywords

Vascular Architecture Amelanotic Melanoma Vascular Target Iymph Node Microvascular Architecture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach R., Auerbach W., and Polakowski I., 1991, Assays for angiogenesis: a review. Pharmacol. Ther., 51:1–11.PubMedCrossRefGoogle Scholar
  2. Carey D.J., 1991, Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu.Rev.Physiol., 53: 161–177.PubMedCrossRefGoogle Scholar
  3. Christofferson R. H., Nilsson B. O., 1992, Microvascular corrosion casting in angiogenesis research. In: Motta P. M., Murakami T., Fujita H. (Eds.) Scanning electron Microscopy of Vascular Casts: methods and Applications. 27–37. Kluwer Academic Publishers, Boston-Dordrecht-London.CrossRefGoogle Scholar
  4. Coltrini D., Gualandris A., Nelli E. E., Parolini S., Molinari-Tosatti M. P., Quarto N., Ziche M., Giavazzi R., Presta M., 1995, Growth advantage and vascularization induced by basic fibroblast growth factor overexpression in endometrial HEC-l-B cells: an export-dependent mechanism of action. Cancer Res., 55: 4729–4738.PubMedGoogle Scholar
  5. Dellian M., Witwer B. P., Salehi H. A., Yuan F., Jain R. K., 1996, Quantitation and physiological characterization of angiogenic vessels in mice. Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permealility factor, and host microenvironment. Am. J. Pathol., 149: 59–71.PubMedGoogle Scholar
  6. Denekamp J., 1984, Vascular endothelium as the vulnerable element in tumors. Acta Radiol. Oncol., 23:217–225.PubMedCrossRefGoogle Scholar
  7. Fajardo L. F., 1989, The complexity of endothelial cells. A review. Am. J. Clin. Pathol., 92: 241–250.PubMedGoogle Scholar
  8. Folkman J., 1985, Tumor angiogenesis. Adv. Cancer Res., 43: 175–203.PubMedCrossRefGoogle Scholar
  9. Folkman, J., 1995, Tumor angiogenesis. The molecular basis of cancer. J. Mendelsohn, P. H. Howley, M. A. Israel and L. A. Liotta (eds.). Philadelphia, W. B. Saunders, 206–232.Google Scholar
  10. Folkman J., Shing Y., 1992, Angiogenesis. J. Biol. Chem., 267: 10931–10934.PubMedGoogle Scholar
  11. Kaufmann P., Bruns U., Leiser R., Luckhardt M., Winterhager E., 1985, The fetal vascularisation of term human placental villi. II Intermediate and terminal villi. Anat. Embryol. Berl., 173: 203–214.PubMedCrossRefGoogle Scholar
  12. Klagsbrun M., D’Amore P. A., 1991, Regulators of angiogenesis. Annu. Rev. Physiol., 53: 217–239.PubMedCrossRefGoogle Scholar
  13. Konerding M. A., 1991, Scanning electron microscopy of corrosion casting in medicine. Sanning Microsc, 5: 851–865.Google Scholar
  14. Konerding M. A., van Ackern C., Steinberg F., Streffer C., 1992a, The Development of the Tumour Vascular System: 2-D and 3-D Approaches to Network Formation in Human Xenografted Tumours. In: Maragoudakis, M. (ed): Angiogenesis in Health and Disease. Plenum Press, New York, 173–184.CrossRefGoogle Scholar
  15. Konerding M. A., Steinberg F., van Ackern C., Budach V., Streffer C. 1992b, Comparative ultrastructural studies of the vascularity in different human xenografted tumours. Vol. 42. In: Fiebig HH, Berger DP (eds.) Immunodeficient mice in oncology, 169–179. Karger, Basel: Contributions to oncology.Google Scholar
  16. Konerding M. A., Lametschwandtner A., Miodonski A. J., 1995, Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc, 9: 1233–1244.PubMedGoogle Scholar
  17. Lametschwandtner A., Weiger T., Bernroider G., 1989, Morphometry of corrosion cast. In: Motta, PM (ed.), Cells and Tissues: A Three-dimensional Approach by Modern Techniques in Microscopy. Progress in Clinical and Biological Research., Vol. 295: 427–433.Google Scholar
  18. Lewis W. H., 1927, The vascular patterns of tumors. Johns Hopkins Hosp Bull, 41:156–175.Google Scholar
  19. Lindgren A. G. H., 1945, The vascular supply of tumours with special reference to the capillary angioarchitecture. Acta Pathol Microbiol Scand, 22: 433–452.Google Scholar
  20. Malkusch W., Konerding M. A., Klapthor B., Bruch J., 1995, A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumour vascularization. An Cell Pathol, 9: 69–81Google Scholar
  21. Miodonski A., Hodde K. C., Bakker C., 1976, Rasterelektronenmikroskopie von Plastik-Korrosions-Präparaten, morphologische Unterschiede zwischen Arterien und Venen. Beitr. Elektronenmikroskop. Direktabb. Oberfl., 9: 435–442.Google Scholar
  22. Murakami T., 1971, Application of the scanning electron microscope to the study of the fine distribution of the blood vessels. Arch. histol. Jap., 32: 445–454.PubMedCrossRefGoogle Scholar
  23. Rhodin J.A.G., Fujita H., 1989, Capillary growth in the mesentery of normal young rats. Intavital video and electron microscope analysis. J. Submicros. Cytol. Pathol., 21: 1–34.Google Scholar
  24. Shubik P., 1982, Vascularisation of tumours: A review. J Cancer Res Clin Oncol, 103: 211–226.PubMedCrossRefGoogle Scholar
  25. Spalteholtz W., 1914, Über das Durchsichtigmachen von menschlichen und tierischen Präparaten nebst Anhang über Knochenfärbung. 2. ergänzte Auflage, Leipzig, Hirzel.Google Scholar
  26. Vaupel P., Gabbert H., 1986, Evidence for and against a tumor type specific vascularity. Strahlenther. Onkol., 162: 633–638.PubMedGoogle Scholar
  27. Vaupel P., Fortmeyer H. P., Runkel 1987, Blood flow, oxygen comsumption, and tissue oxygenation of human breast cancer xenografts in nude rats., Cancer Res., 47: 3496–3503.PubMedGoogle Scholar
  28. Vaupel P., Kallinowski F., Schienger K., Fortmeyer H. P., 1989, Blood flow and oxygen consumption rates of human gynecological tumors xenografted into rnu/rnu-rats. Strahlenther. Onkol., 165: 502.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. A. Konerding
    • 1
  • E. Fait
    • 1
  • A. Gaumann
    • 2
  • Ch. Dimitropoulou
    • 1
  • W. Malkusch
    • 3
  1. 1.Institute of AnatomyJohannes Gutenberg-University MainzMainzGermany
  2. 2.Institute of PathologyUniversity ClinicsMainzGermany
  3. 3.Kontron Elektronik GmbHEchingGermany

Personalised recommendations