Skip to main content

Hypoxia/Reoxygenation Enhances Tube Formation of Cultured Human Microvascular Endothelial Cells: the Role of Reactive Oxygen Species

  • Chapter
Angiogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 298))

Abstract

Angiogenesis, the generation of new blood vessels, is a ubiquitous process which is tightly regulated in normal physiological situations. The cellular and molecular mechanisms controlling the initiation and termination of the angiogenic process are only partially known (Folkman and Klagsbrun, 1987; Folkman and Shing, 1992; Maragoudakis, 1994; Ferrara, 1996; Montesano et al. , 1996; Pepper et al., 1996). The pathophysiology of many diseases involves uncontrolled growth of new blood vessels, prompting the search for therapeutically effective inhibitors of angiogenesis (Maragoudakis, Sarmonika, and Panoutsacopoulou, 1988; Folkman and Ingber, 1992; Fotsis et al., 1993; D’Amato et al., 1994; O’Reilly et al., 1994; Polverini, 1994; Chen et al., 1995; Gradishar, 1997; O’Reilly et al., 1997). Conversely, in other clinical settings, promotion of neovascularization is desirable, e.g, after myocardial infarction and/or in peripheral blood vessel occlusion, thus calling for appropriate stimulators of “therapeutic” angiogenesis (Höckel et al., 1993; Isner et al., 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach, R., Auerbach, W., and Polakowski, I. (1991) Assays for angiogenesis: a review. Pharmac. Ther. 51: 1–11.

    Article  Google Scholar 

  • Baatout, S. (1997) Endothelial differentiation using Matrigel. Anticancer Res. 17: 451–455.

    PubMed  CAS  Google Scholar 

  • Brogi, E., Schatteman, G, Wu, T., Kim, E.A., Varticovski, L., Keyt, B., and Isner, J.M. (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest. 97: 469–476.

    Article  PubMed  CAS  Google Scholar 

  • Chen, C, Parangi, S., Tolentino, M.J., and Folkman, J. (1995) A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res. 55: 4230–4233.

    PubMed  CAS  Google Scholar 

  • D’Amato, R.J., Loughnan, M.S., Flynn, E., and Folkman, J. (1994) Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91: 4082–4085.

    Article  PubMed  Google Scholar 

  • Davis, CM., Danehower, S.C., Laurenza, A., and Molony, J.L. (1993) Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J. Cell. Biochem. 51: 206–218.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, N. (1996) The biology of vascular endothelial growth factor. In: Molecular, cellular, and clinical aspects of angiogenesis, pp. 73–84. Edited by Maragoudakis, M. New York and London, Plenum Press.

    Chapter  Google Scholar 

  • Folkman, J. and Ingber, D. (1992) Inhibition of angiogenesis. Semin. Cancer Biol. 3: 89–96.

    PubMed  CAS  Google Scholar 

  • Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235: 442–447.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, No. 16: 10931–10934.

    PubMed  CAS  Google Scholar 

  • Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90: 2690–2694.

    Article  PubMed  CAS  Google Scholar 

  • Gradishar, W.J. (1997) An overview of clinical trials involving inhibitors of angiogenesis and their mechanism of action. Invest. New Drugs 15: 49–59.

    Article  PubMed  CAS  Google Scholar 

  • Grant, D.S., Lelkes, P.I., Fukuda, K., and Kleinman, H.K. (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A: 327–336.

    Article  Google Scholar 

  • Hahn, K. A., Schmidt, D.H., and Lelkes, P.I. (1995a) Hypoxia induces in vitro angiogenesis in cultured human microvascular endothelial cells. FASEB J. 9: A587

    Google Scholar 

  • Hahn, K.A., Schmidt, D.H., and Lelkes, P.I. (1995b) Hypoxia enhances in vitro angiogenesis of human microvascular endothelial cells cultured on Matrigel. In: Molecular, Cellular and Clinical Aspects of Angiogenesis, pp. 260–261. Edited by Maragoudakis, ME. New York and London, Plenum Press.

    Google Scholar 

  • Haralabopoulos, G.C., Grant, D.S., Kleinman, H.K., Lelkes, P.I., Papaioannou, SP., and Maragoudakis, M.E. (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71: 575–582.

    PubMed  CAS  Google Scholar 

  • Höckel, M., Schienger, K., Doctrow, S., Kissel, T., and Vaupel, P. (1993) Therapeutic angiogenesis. Arch. Surg. 128: 423–429.

    Article  PubMed  Google Scholar 

  • Isner, J.M., Walsh, K., Symes, J.F., Pieczek, A., Takeshita, S., Lowry, J., Rossow, S., Rosenfield, K., Weir, L., Brogi, E., and Schainfeld, R. (1995) Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 91: 2687–2692.

    Article  PubMed  CAS  Google Scholar 

  • Kanda, K., Hayman, G.T., Silverman, MD., and Lelkes, P.I. (1998) Comparison of ICAM-1 and VCAM-1 in various human endothelial cell types and smooth muscle cells. Endothelium (in press)

    Google Scholar 

  • Kinsella, J.L., Grant, D.S., Weeks, B.S., and Kleinman, H.K. (1992) Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp. Cell Res. 199: 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107: 1589–1598.

    Article  PubMed  CAS  Google Scholar 

  • Lelkes, P.I., Manolopoulos, V.G., Silverman, M., Zhang, S., Karmiol, S., and Unsworth, B.R. (1996) On the possible role of endothelial cell heterogeneity in angiogenesis. In: Molecular, cellular, and clinical aspects of angiogenesis, pp. 1–18. Edited by Maragoudakis, M.E. New York, Plenum Press.

    Chapter  Google Scholar 

  • Lelkes, P.I., Silverman, M., Wankowski, D.M., Zhang, S., Varani, J., Dame, M., Shen, J., and Karmiol, S. (1994) A comparison of umbilical vein endothelial cells (HUVEC) and dermal microvascular endothelial cells (HMVEC) with respect to adhesion molecule expression, tissue factor activity, and neutrophil killing. Mol. Biol. Cell. 5: 372a

    Google Scholar 

  • Manolopoulos, V.G., Samet, M.M., and Lelkes, P.I. (1995) Regulation of the adenylyl cyclase signalling system in various types of cultured endothelial cells. J. Cell Biochem. 57: 590–598.

    Article  PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E. (1994) Angiogenesis. Ann. Card. Surg. 8: 13–19.

    Google Scholar 

  • Maragoudakis, M.E., Sarmonika, M., and Panoutsacopoulou, M. (1988) Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther. 244: 729–733.

    PubMed  CAS  Google Scholar 

  • Maragoudakis, M.E., Tsopanoglou, N.E., and Haralabopoulos, G. (1993) Regulation of angiogenesis via protein kinase C In: Vascular Enthothelium, pp. 81–85. Edited by Catravas, J.D. New York, Plenum Press.

    Chapter  Google Scholar 

  • Maulik, N., Watanabe, M., Zu, Y.L., Huang, CK., Cordis, G.A., Schley, J.A., and Das, D.K. (1996) Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 396: 233–237.

    Article  PubMed  CAS  Google Scholar 

  • Millauer, B., Wizigmann-Voos, S., Schnüren, H., Martinez, R., Moller, N.P.H., Risau, W., and Ullrich, A. (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R., Kumar, S., Orci, L., and Pepper, M.S. (1996) Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab. Invest. 75: 249–262.

    PubMed  CAS  Google Scholar 

  • Montesano, R. and Orci, L. (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, WS., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997) Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285.

    Article  PubMed  Google Scholar 

  • O’Reilly, M.S., Holmgren, L., Shing, Y, Chen, C, Rosenthal, RA., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell 79: 345–328.

    Google Scholar 

  • Papadimitriou, E., Manolopoulos, V.G., Maragoudakis, M.E., Unsworth, B.R., and Lelkes, P.I. (1997) Thrombin modulates vectorial secretion of extracellular matrix proteins in cultured endothelial cells. Am. J. Physiol. 272: C1112-C1122.

    Google Scholar 

  • Pepper, M.S., Montesano, R, Mandriota, S.J., Orci, L., and Vassalli, J.D. (1996) Angiogenesis: A paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme and Protein 49: 138–162.

    PubMed  CAS  Google Scholar 

  • Polverini, P. (1994) Inhibitors of neovascularization: critical mediators in the coordinate regulation of angiogenesis. In: Angiogenesis: molecular biology, clinical aspects, pp. 29–38. Edited by Maragoudakis, M.E., Gullino, P.M., and Lelkes, P.I. New York, Plenum Press.

    Google Scholar 

  • Przyklenk, K. and Kloner, RA. (1996) Role of protein kinase C in ischemic preconditioning: in search of the “pure and simple truth”. Basic Res. Cardiol. 91: 41–43.

    Article  PubMed  CAS  Google Scholar 

  • Royall, J.A. and Ischiropoulos, H. (1993) Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H202 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348–355.

    Article  PubMed  CAS  Google Scholar 

  • Sahai, A., Patel, M.S., Zavosh, A.S., and Tannen, R.L. (1994) Chronic hypoxia impairs the differentiation of 3T3-L1 fibroblast in culture, role of sustained protein kinase C activation. J. Cell Physiol. 160: 107–112.

    Article  PubMed  CAS  Google Scholar 

  • Samet, M.M. and Lelkes, P.I. (1993) Flow patterns and endothelial cell morphology in a simplified model of an artificial ventricle. Cell Biophys. 23: 139–163.

    PubMed  CAS  Google Scholar 

  • Seetharam, L., Gotoh, N., Maru, Y, Neufeld, G., Yamaguchi, S., and Shibuya, M. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10: 135–147.

    PubMed  CAS  Google Scholar 

  • Shono, T., Ono, M., Izumi, H., Jimi, S.I., Matsushima, K., Okamoto, T., Kohno, K., and Kuwano, M. (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16:4231–4239.

    PubMed  CAS  Google Scholar 

  • Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, M.D., Manolopoulos, V.G., Unsworth, B.R., and Lelkes, P.I. (1996) Tissue factor expression is differentially modulated by cyclic mechanical strain in various human endothelial cells. Blood Coagul. Fibrinolysis 7: 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Strasser, R., Htun, P., and Schaper, W. (1996) Salvage of jeopardized myocardium by ischemic preconditioning: Is the quest over? Mol. Cell. Biochem. 161: 209–215.

    Article  Google Scholar 

  • Takagi, H., King, G.L., Ferrara, N., and Aiello, L.P. (1996) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest. Ophthalmol. Vis. Sci. 37: 1311–1321.

    PubMed  CAS  Google Scholar 

  • Tian, H., McKnight, S.L., and Russell, D.W. (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development 11: 72–82.

    Article  CAS  Google Scholar 

  • Tsopanoglou, N.E., Haralabopoulos, G.C., and Maragoudakis, M.E. (1995) Opposing effects on modulation of angiogenesis by protein kinase C and cAMP-mediated pathways. J. Vasc. Res. 270: 8367–8372.

    Google Scholar 

  • Tsopanoglou, N.E., Pipili-Synetos, E., and Maragoudakis, M.E. (1993) Protein kinase C involvement in the regulation of angiogenesis. J. Vasc. Res. 30: 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Zimrin, A.B., Villeponteau, B., and Maciag, T. (1995) Models of in vitro angiogenesis: Endothelial cell differentiation on fibrin but not Matrigel is transcriptionally dependent. Biochem. Biophys. Res. Commun. 213: 630–638.

    Article  PubMed  CAS  Google Scholar 

  • Zulueta, J.J., Sawhney, R., Yu, F.S., Cote, C.C., and Hassoun, P.M. (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am. J. Physiol. 272: L897-L902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lelkes, P.I., Hahn, K.A., Karmiol, S., Schmidt, D.H. (1998). Hypoxia/Reoxygenation Enhances Tube Formation of Cultured Human Microvascular Endothelial Cells: the Role of Reactive Oxygen Species. In: Maragoudakis, M.E. (eds) Angiogenesis. NATO ASI Series, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9185-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9185-3_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9187-7

  • Online ISBN: 978-1-4757-9185-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics