Angiogenesis pp 321-336 | Cite as

Hypoxia/Reoxygenation Enhances Tube Formation of Cultured Human Microvascular Endothelial Cells: the Role of Reactive Oxygen Species

  • Peter I. Lelkes
  • Kenneth A. Hahn
  • Soverin Karmiol
  • Donald H. Schmidt
Chapter
Part of the NATO ASI Series book series (NSSA, volume 298)

Abstract

Angiogenesis, the generation of new blood vessels, is a ubiquitous process which is tightly regulated in normal physiological situations. The cellular and molecular mechanisms controlling the initiation and termination of the angiogenic process are only partially known (Folkman and Klagsbrun, 1987; Folkman and Shing, 1992; Maragoudakis, 1994; Ferrara, 1996; Montesano et al. , 1996; Pepper et al., 1996). The pathophysiology of many diseases involves uncontrolled growth of new blood vessels, prompting the search for therapeutically effective inhibitors of angiogenesis (Maragoudakis, Sarmonika, and Panoutsacopoulou, 1988; Folkman and Ingber, 1992; Fotsis et al., 1993; D’Amato et al., 1994; O’Reilly et al., 1994; Polverini, 1994; Chen et al., 1995; Gradishar, 1997; O’Reilly et al., 1997). Conversely, in other clinical settings, promotion of neovascularization is desirable, e.g, after myocardial infarction and/or in peripheral blood vessel occlusion, thus calling for appropriate stimulators of “therapeutic” angiogenesis (Höckel et al., 1993; Isner et al., 1995).

Keywords

Tube Formation Reactive Oxygen Species Scavenger Vascular Endothelial Cell Growth Factor Human Microvascular Endothelial Cell Endothelial Cell Tube Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auerbach, R., Auerbach, W., and Polakowski, I. (1991) Assays for angiogenesis: a review. Pharmac. Ther. 51: 1–11.CrossRefGoogle Scholar
  2. Baatout, S. (1997) Endothelial differentiation using Matrigel. Anticancer Res. 17: 451–455.PubMedGoogle Scholar
  3. Brogi, E., Schatteman, G, Wu, T., Kim, E.A., Varticovski, L., Keyt, B., and Isner, J.M. (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J. Clin. Invest. 97: 469–476.PubMedCrossRefGoogle Scholar
  4. Chen, C, Parangi, S., Tolentino, M.J., and Folkman, J. (1995) A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res. 55: 4230–4233.PubMedGoogle Scholar
  5. D’Amato, R.J., Loughnan, M.S., Flynn, E., and Folkman, J. (1994) Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91: 4082–4085.PubMedCrossRefGoogle Scholar
  6. Davis, CM., Danehower, S.C., Laurenza, A., and Molony, J.L. (1993) Identification of a role of the vitronectin receptor and protein kinase C in the induction of endothelial cell vascular formation. J. Cell. Biochem. 51: 206–218.PubMedCrossRefGoogle Scholar
  7. Ferrara, N. (1996) The biology of vascular endothelial growth factor. In: Molecular, cellular, and clinical aspects of angiogenesis, pp. 73–84. Edited by Maragoudakis, M. New York and London, Plenum Press.CrossRefGoogle Scholar
  8. Folkman, J. and Ingber, D. (1992) Inhibition of angiogenesis. Semin. Cancer Biol. 3: 89–96.PubMedGoogle Scholar
  9. Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors. Science 235: 442–447.PubMedCrossRefGoogle Scholar
  10. Folkman, J. and Shing, Y. (1992) Angiogenesis. J. Biol. Chem. 267, No. 16: 10931–10934.PubMedGoogle Scholar
  11. Fotsis, T., Pepper, M., Adlercreutz, H., Fleischmann, G., Hase, T., Montesano, R., and Schweigerer, L. (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90: 2690–2694.PubMedCrossRefGoogle Scholar
  12. Gradishar, W.J. (1997) An overview of clinical trials involving inhibitors of angiogenesis and their mechanism of action. Invest. New Drugs 15: 49–59.PubMedCrossRefGoogle Scholar
  13. Grant, D.S., Lelkes, P.I., Fukuda, K., and Kleinman, H.K. (1991) Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell. Dev. Biol. 27A: 327–336.CrossRefGoogle Scholar
  14. Hahn, K. A., Schmidt, D.H., and Lelkes, P.I. (1995a) Hypoxia induces in vitro angiogenesis in cultured human microvascular endothelial cells. FASEB J. 9: A587Google Scholar
  15. Hahn, K.A., Schmidt, D.H., and Lelkes, P.I. (1995b) Hypoxia enhances in vitro angiogenesis of human microvascular endothelial cells cultured on Matrigel. In: Molecular, Cellular and Clinical Aspects of Angiogenesis, pp. 260–261. Edited by Maragoudakis, ME. New York and London, Plenum Press.Google Scholar
  16. Haralabopoulos, G.C., Grant, D.S., Kleinman, H.K., Lelkes, P.I., Papaioannou, SP., and Maragoudakis, M.E. (1994) Inhibitors of basement membrane collagen synthesis prevent endothelial cell alignment in Matrigel in vitro and angiogenesis in vivo. Lab. Invest. 71: 575–582.PubMedGoogle Scholar
  17. Höckel, M., Schienger, K., Doctrow, S., Kissel, T., and Vaupel, P. (1993) Therapeutic angiogenesis. Arch. Surg. 128: 423–429.PubMedCrossRefGoogle Scholar
  18. Isner, J.M., Walsh, K., Symes, J.F., Pieczek, A., Takeshita, S., Lowry, J., Rossow, S., Rosenfield, K., Weir, L., Brogi, E., and Schainfeld, R. (1995) Arterial gene therapy for therapeutic angiogenesis in patients with peripheral artery disease. Circulation 91: 2687–2692.PubMedCrossRefGoogle Scholar
  19. Kanda, K., Hayman, G.T., Silverman, MD., and Lelkes, P.I. (1998) Comparison of ICAM-1 and VCAM-1 in various human endothelial cell types and smooth muscle cells. Endothelium (in press)Google Scholar
  20. Kinsella, J.L., Grant, D.S., Weeks, B.S., and Kleinman, H.K. (1992) Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp. Cell Res. 199: 56–62.PubMedCrossRefGoogle Scholar
  21. Kubota, Y., Kleinman, H.K., Martin, G.R., and Lawley, T.J. (1988) Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol. 107: 1589–1598.PubMedCrossRefGoogle Scholar
  22. Lelkes, P.I., Manolopoulos, V.G., Silverman, M., Zhang, S., Karmiol, S., and Unsworth, B.R. (1996) On the possible role of endothelial cell heterogeneity in angiogenesis. In: Molecular, cellular, and clinical aspects of angiogenesis, pp. 1–18. Edited by Maragoudakis, M.E. New York, Plenum Press.CrossRefGoogle Scholar
  23. Lelkes, P.I., Silverman, M., Wankowski, D.M., Zhang, S., Varani, J., Dame, M., Shen, J., and Karmiol, S. (1994) A comparison of umbilical vein endothelial cells (HUVEC) and dermal microvascular endothelial cells (HMVEC) with respect to adhesion molecule expression, tissue factor activity, and neutrophil killing. Mol. Biol. Cell. 5: 372aGoogle Scholar
  24. Manolopoulos, V.G., Samet, M.M., and Lelkes, P.I. (1995) Regulation of the adenylyl cyclase signalling system in various types of cultured endothelial cells. J. Cell Biochem. 57: 590–598.PubMedCrossRefGoogle Scholar
  25. Maragoudakis, M.E. (1994) Angiogenesis. Ann. Card. Surg. 8: 13–19.Google Scholar
  26. Maragoudakis, M.E., Sarmonika, M., and Panoutsacopoulou, M. (1988) Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol. Exp. Ther. 244: 729–733.PubMedGoogle Scholar
  27. Maragoudakis, M.E., Tsopanoglou, N.E., and Haralabopoulos, G. (1993) Regulation of angiogenesis via protein kinase C In: Vascular Enthothelium, pp. 81–85. Edited by Catravas, J.D. New York, Plenum Press.CrossRefGoogle Scholar
  28. Maulik, N., Watanabe, M., Zu, Y.L., Huang, CK., Cordis, G.A., Schley, J.A., and Das, D.K. (1996) Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 396: 233–237.PubMedCrossRefGoogle Scholar
  29. Millauer, B., Wizigmann-Voos, S., Schnüren, H., Martinez, R., Moller, N.P.H., Risau, W., and Ullrich, A. (1993) High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835–846.PubMedCrossRefGoogle Scholar
  30. Montesano, R., Kumar, S., Orci, L., and Pepper, M.S. (1996) Synergistic effect of hyaluronan oligosaccharides and vascular endothelial growth factor on angiogenesis in vitro. Lab. Invest. 75: 249–262.PubMedGoogle Scholar
  31. Montesano, R. and Orci, L. (1985) Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42: 469–477.PubMedCrossRefGoogle Scholar
  32. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, WS., Flynn, E., Birkhead, J.R., Olsen, B.R., and Folkman, J. (1997) Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 88: 277–285.PubMedCrossRefGoogle Scholar
  33. O’Reilly, M.S., Holmgren, L., Shing, Y, Chen, C, Rosenthal, RA., Moses, M., Lane, W.S., Cao, Y., Sage, E.H., and Folkman, J. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression ofmetastases by a Lewis lung carcinoma. Cell 79: 345–328.Google Scholar
  34. Papadimitriou, E., Manolopoulos, V.G., Maragoudakis, M.E., Unsworth, B.R., and Lelkes, P.I. (1997) Thrombin modulates vectorial secretion of extracellular matrix proteins in cultured endothelial cells. Am. J. Physiol. 272: C1112-C1122.Google Scholar
  35. Pepper, M.S., Montesano, R, Mandriota, S.J., Orci, L., and Vassalli, J.D. (1996) Angiogenesis: A paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme and Protein 49: 138–162.PubMedGoogle Scholar
  36. Polverini, P. (1994) Inhibitors of neovascularization: critical mediators in the coordinate regulation of angiogenesis. In: Angiogenesis: molecular biology, clinical aspects, pp. 29–38. Edited by Maragoudakis, M.E., Gullino, P.M., and Lelkes, P.I. New York, Plenum Press.Google Scholar
  37. Przyklenk, K. and Kloner, RA. (1996) Role of protein kinase C in ischemic preconditioning: in search of the “pure and simple truth”. Basic Res. Cardiol. 91: 41–43.PubMedCrossRefGoogle Scholar
  38. Royall, J.A. and Ischiropoulos, H. (1993) Evaluation of 2’,7’-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H202 in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348–355.PubMedCrossRefGoogle Scholar
  39. Sahai, A., Patel, M.S., Zavosh, A.S., and Tannen, R.L. (1994) Chronic hypoxia impairs the differentiation of 3T3-L1 fibroblast in culture, role of sustained protein kinase C activation. J. Cell Physiol. 160: 107–112.PubMedCrossRefGoogle Scholar
  40. Samet, M.M. and Lelkes, P.I. (1993) Flow patterns and endothelial cell morphology in a simplified model of an artificial ventricle. Cell Biophys. 23: 139–163.PubMedGoogle Scholar
  41. Seetharam, L., Gotoh, N., Maru, Y, Neufeld, G., Yamaguchi, S., and Shibuya, M. (1995) A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10: 135–147.PubMedGoogle Scholar
  42. Shono, T., Ono, M., Izumi, H., Jimi, S.I., Matsushima, K., Okamoto, T., Kohno, K., and Kuwano, M. (1996) Involvement of the transcription factor NF-kappaB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16:4231–4239.PubMedGoogle Scholar
  43. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.PubMedCrossRefGoogle Scholar
  44. Silverman, M.D., Manolopoulos, V.G., Unsworth, B.R., and Lelkes, P.I. (1996) Tissue factor expression is differentially modulated by cyclic mechanical strain in various human endothelial cells. Blood Coagul. Fibrinolysis 7: 281–288.PubMedCrossRefGoogle Scholar
  45. Strasser, R., Htun, P., and Schaper, W. (1996) Salvage of jeopardized myocardium by ischemic preconditioning: Is the quest over? Mol. Cell. Biochem. 161: 209–215.CrossRefGoogle Scholar
  46. Takagi, H., King, G.L., Ferrara, N., and Aiello, L.P. (1996) Hypoxia regulates vascular endothelial growth factor receptor KDR/Flk gene expression through adenosine A2 receptors in retinal capillary endothelial cells. Invest. Ophthalmol. Vis. Sci. 37: 1311–1321.PubMedGoogle Scholar
  47. Tian, H., McKnight, S.L., and Russell, D.W. (1997) Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes & Development 11: 72–82.CrossRefGoogle Scholar
  48. Tsopanoglou, N.E., Haralabopoulos, G.C., and Maragoudakis, M.E. (1995) Opposing effects on modulation of angiogenesis by protein kinase C and cAMP-mediated pathways. J. Vasc. Res. 270: 8367–8372.Google Scholar
  49. Tsopanoglou, N.E., Pipili-Synetos, E., and Maragoudakis, M.E. (1993) Protein kinase C involvement in the regulation of angiogenesis. J. Vasc. Res. 30: 202–208.PubMedCrossRefGoogle Scholar
  50. Zimrin, A.B., Villeponteau, B., and Maciag, T. (1995) Models of in vitro angiogenesis: Endothelial cell differentiation on fibrin but not Matrigel is transcriptionally dependent. Biochem. Biophys. Res. Commun. 213: 630–638.PubMedCrossRefGoogle Scholar
  51. Zulueta, J.J., Sawhney, R., Yu, F.S., Cote, C.C., and Hassoun, P.M. (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am. J. Physiol. 272: L897-L902.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Kenneth A. Hahn
    • 2
  • Soverin Karmiol
    • 3
  • Donald H. Schmidt
    • 2
  1. 1.Laboratory of Cell Biology, Department of Medicine, Milwaukee Clinical CampusUniversity of Wisconsin Medical SchoolUSA
  2. 2.Section of Cardiology, Department of Medicine, Milwaukee Clinical CampusUniversity of Wisconsin Medical SchoolUSA
  3. 3.BioWhittaker, Inc.WalkersvilleUSA

Personalised recommendations