Skip to main content

Microvascular Endothelial Cells from Adrenal Medulla — A Model for in Vitro Angiogenesis

  • Chapter
Book cover Angiogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 298))

Abstract

Angiogenesis is the development of new and small blood vessels by budding and sprouting from larger, extant vessels (Beck Jr, and D’Amore, 1997; Bussolino, Montavani, and Persico, 1997). In adult tissues endothelial cells are quiescent but rapid proliferation occurs for a limited period of time during menstruation, ovulation, reproduction, implantation, mammary gland changes during lactation, and wound healing (Cockerill, Gamble, and Vadas, 1995; Folkman, and Shing, 1992). Abnormal or uncontrolled angiogenesis has been seen in diabetic retinopathy, arthritis, hemangiomas, psoriasis as well as for growth and maintenance of many types of benign and malignant tumors (Cockerill et al, 1995; Folkman, Watson, Ingber, and Hanahan, 1989; Liotta, Stug, and Stetlen-Stevenson, 1992; Saclarides, Speziale, Drab, Szeluga, and Rubin, 1994; Folkman, 1992). Inducers of angiogenesis can act directly on endothelial cells, or indirectly, via accessory cells (monocytes, mastocytes, T cells). Vascular growth factor A (VEGF-A), VEGF-B, VEGF-C and placental growth factor (PIGF) are angiogenic glycoproteins and display high amino acid similarity in the platelet-derived growth factor (PDGF) and tumor necrosis factor α (TNF α) and requires interaction with integrins αvβ3; the other is via VEGF-A and is integrins αvβ5 — dependent (Friedlander, Brook, Shaffer, Kincaid, Verner, and Cheresh, 1995). It is also becoming evident that there are different classes of endogenous inhibitors of endothelial cell growth and motility that work in concert with inducer molecules to control angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banerjee DK. Amophomycin inhibits mannosylphosphoryldolichol synthesis by forming a complex with dolichylmonophosphate. J Biol Chem 264:2024–2028, 1989.

    PubMed  CAS  Google Scholar 

  • Banerjee DK. Microenvironment of endothelial cell growth and regulation of protein N-glycosylation. Indian J Biochem Biophys 25:8–13, 1988.

    PubMed  CAS  Google Scholar 

  • Banerjee DK, Kousvelari EE, Baum BJ. cAMP-mediated protein phosphorylation of microsomal membranes increases mannosylphosphodolichol synthase activity. Proc Natl Acad Sci (USA) 84:6389–6393, 1989.

    Article  Google Scholar 

  • Banerjee DK, Ornberg RL, Youdim MBH, Heldman E and Pollard HB. Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc Natl Acad Sci (USA) 82:4703–4706, 1985.

    Article  Google Scholar 

  • Banerjee DK, Tavárez JJ, Oliveira CM. Expression of blood clotting Factor VIII:C gene in capillary endothelial cells. FEBS Letts 306:33–37, 1992.

    Article  CAS  Google Scholar 

  • Banerjee DK, Vendrell-Ramos M. Is asparagine-linked protein glycosylation an obligatory requirement for angiogenesis? Indian J Biochem Biophys 30:389–394, 1993.

    PubMed  CAS  Google Scholar 

  • Bar RS, Hoak JC, Peacock ML. Insulin receptors in human endothelial cells: Identification and characterization. J Clin Endocrinol Metab 47:699–702, 1978.

    Article  PubMed  CAS  Google Scholar 

  • Bar RS, Siddle K., Dolash S, Boes M., Dake B. Actions of insulin and insulin like growth factors I and II in cultured microvessel endothelial cells from bovine adipose tissue. Metabolism 37:714–720, 1988.

    Article  PubMed  CAS  Google Scholar 

  • Baxter JD, Macloed KM. In Metabolic Control and Disease. PK Bondy and IN Rosenberg, eds. WB Saunders, Philadelphia, pp 140, 1980.

    Google Scholar 

  • Beck Jr L, D’Amore PA. Vascular development:Cellular and molecular regulation. FASEB J 11:365–373 1997.

    PubMed  CAS  Google Scholar 

  • Bruns RR, Palade GE. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol 37:277–299, 1968.

    Article  PubMed  CAS  Google Scholar 

  • Brush JS, Tavârez-Pagân JJ, Banerjee DK. Insulin and IGF-1 manifest differential effects in a clonal capillary endothelial cell line. Biochem Intl 25:537–545, 1991.

    CAS  Google Scholar 

  • Bussolino F, Montavani A, Persico G. Molecular mechanisms of blood vessel formation. TIBS 22:251–256, 1997.

    PubMed  CAS  Google Scholar 

  • Carson MP, Peterson SW, Moynahan ME, Shepro D. In Vitro 19:833–840, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Cockerill GW, Gamble JR, Vadas MA. Angiogenesis:Model and modulation. Int Rev Cytol 159:113–159, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Mukherjee S, Banerjee DK. a-Adrenoreceptors of multiple affinities in a clonal capillary endothelial cell line and its functional implication. Molec Cellular Biochem 140:49–54, 1994.

    Article  CAS  Google Scholar 

  • Durieu-Trautmann O, Foignant N, Strosberg AD, Couraud OO. Coexpression of α1 and α2-adrenergic receptors on bovine brain capillary endothelial cells in culture. J Neurochem 56:775–781, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Elbain AD. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56:497–534, 1987.

    Article  Google Scholar 

  • Eriksson O, Lewis N, Freikel N. Growth reterdation during early organogenesis in embryos of experimentally diabetic rats. Diabetes 33:281–284, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Folkman J. The role of angiogenesis in tumor growth. Seminar in Cancer Biol 3:65–71, 1992.

    CAS  Google Scholar 

  • Folkman J, Shing Y. Angiogenesis. J Biol Chem 267:10931–10934, 1992.

    PubMed  CAS  Google Scholar 

  • Folkman J, Watson K., Ingber D, Hanahan D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Friedlander M., Brook PC, Shaffer RW, Kincaid CM, Verner JA, Cheresh DA. Definition of two angiogenic pathways by distant v integrins. Science 270:1500–1502, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Gammeltoft S, Gliemann J. Binding and degradation of l25I-labelled insulin by isolated rat fat cells. Biochim Biophys Acta 320:16–32, 1973.

    Article  PubMed  CAS  Google Scholar 

  • King GK, Goodman AD, Buzney S, Mosses A, Kahn CR. Receptors and growth promoting effects of insulin and insulin like growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest 75:1028–1036, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54:631–664, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Kousvelari EE, Grant SR, Baum BJ. -Adrenergic receptor regulation of N-linked protein glycosylation in rat parotid acinar cells. Proc Natl Acad Sci (USA) 80:7146–7150, 1983.

    Article  CAS  Google Scholar 

  • Levitzki A. α-Adrenergic receptors and their mode of coupling to adenylate cyclase. Physiol Rev 66: 819–854, 1986.

    PubMed  CAS  Google Scholar 

  • Limbard LE. Cell surface receptors:A short course on theory and methods. Martinus Publishing, Boston, pp 75–115, 1986.

    Book  Google Scholar 

  • Liotta LA, Stug PS, Stetlen-Stevenson WG. Cancer metastasis and angiogenesis: An imbalance of positive and negative regulation. Cell 64:327–336, 1992.

    Article  Google Scholar 

  • Maciag T, Hoover GA, Stermerman MB, Weistein R. Serial propagation of human endothelial cells in vitro. J Cell Biol 91:420–426, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Maragoudakis ME. The role of thrombin in angiogenesis. In Molecular, Cellular, and Clinical Aspects of Angiogenesis (ed. Michael E. Maragoudakis), pp 95–103, 1996. Plenum Press, New York.

    Chapter  Google Scholar 

  • Martinez JA, Torres IN, Banerjee DK. Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for endothelial cell growth and proliferation. FASEB J 11(9):A1385, 1997.

    Google Scholar 

  • Montesano R, Orci L. Tumor promoting phorbol esters induce angiogenesis in vitro. Cell 42:469–477, 1985.

    Article  PubMed  CAS  Google Scholar 

  • Neve KA, Mcgonigl P, Molinoff PB. Quantitation analysis of the selectivity of radioligands for subtypes of α-adrenergic receptors. J Pharmacol Exp Ther 238:46–53, 1986.

    PubMed  CAS  Google Scholar 

  • Nguyen M., Folkman J, Bischoff J. 1-Deoxymannojirimycin inhibits capillary tube formation in vitro. J Biol Chem 267:26157–26165, 1992.

    PubMed  CAS  Google Scholar 

  • Oliveira CM, Banerjee DK. Role of extracellular signaling on endothelial cell proliferation and protein N-glycosylation. J Cellular Physiol 144:467–472, 1990.

    Article  CAS  Google Scholar 

  • Pili R, Chang J, Partis RA, Muller RA, Chrest FJ, Passaniti A. The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation prevents angiogenesis, and inhibits tumor growth. Cancer Res 55:2920–2926, 1995.

    PubMed  CAS  Google Scholar 

  • Thronton SC, Mueller SN, Levine EM. Human endothelial cells:Use of heparin in cloning and long-term serial cultivation. Science 222:623–625, 1983.

    Article  Google Scholar 

  • Saclarides TJ, Speziale NJ, Drab E, Szeluga DJ, Rubin DB. Tumor angiogenesis and rectal carcinoma. Dis Colon Rectum 37:921–926, 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Banerjee, D.K., Martínez, J.A. (1998). Microvascular Endothelial Cells from Adrenal Medulla — A Model for in Vitro Angiogenesis. In: Maragoudakis, M.E. (eds) Angiogenesis. NATO ASI Series, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9185-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9185-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9187-7

  • Online ISBN: 978-1-4757-9185-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics