Angiogenesis pp 165-178 | Cite as

Structural Studies on Angiogenin, a Protein Implicated in Neovascularization during Tumour Growth

  • K. Ravi Acharya
  • Demetres D. Leonidas
  • Anastassios C. Papageorgiou
  • Nello Russo
  • Robert Shapiro
Part of the NATO ASI Series book series (NSSA, volume 298)


Angiogenesis, the formation of new blood vessels, is an essential part of normal physiological processes such as embryonic growth, wound healing, and the cyclical development of the uterine endometrium. It also occurs in a variety of pathological conditions including arthritis, diabetic retinopathy, and tumour growth (Folkman and Cotran, 1976). Early observers had noted a proliferation of blood vessels in the vicinity of such tumours (see Vallee et al., 1985), and it was later proposed by Folkman (1971) that these tumours are totally dependent on angiogenesis for growth beyond a diameter of 1–2 mm. Angiogenesis is also thought to be a prerequisite for the development of metastases since it provides the means whereby cells disseminate from the original primary tumour.


Angiogenic Activity Transition State Analog Stereo View Massachusetts 02115 Ribonucleolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, K. R., Shapiro, R., Allen, S. C., Riordan, J. F. and Vallee, B. L.1994, Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc. Natl. Acad. Sci. USA, 91: 2915–2919.PubMedCrossRefGoogle Scholar
  2. Acharya, K. R., Shapiro, R., Riordan, J. F. and Vallee, B. L. 1995, Crystal structure of bovine angiogenin at 1.5 Å resolution. Proc. Natl. Acad. Sci. USA, 92: 2949–2953.PubMedCrossRefGoogle Scholar
  3. Allen, S. C., Acharya, K. R., Palmer, K. A., Shaprio, R., Vallee, B. L. and Scheraga, H. A. 1994, A comparison of the predicted and X-ray structures of angiogenin. Implications for further studies of model building of homologous proteins. J. Prot. Chem., 13: 649–658.CrossRefGoogle Scholar
  4. Borah, B., Chen, C. W., Egan, W., Miller, M., Wlodawer, A. and Cohen, J. S. 1985, Nuclear magnetic resonance and neutron diffraction studies of the complex of RNase A with uridine vanadate, a transition state analog. Biochemistry 24: 2058–2067.PubMedCrossRefGoogle Scholar
  5. Curran, T. P., Shapiro, R. and Riordan, J. F. 1993, Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis. Biochemistry, 32: 2307–2313.PubMedCrossRefGoogle Scholar
  6. Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F. and Vallee, B. L. 1985, Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 24: 5480–5486.PubMedCrossRefGoogle Scholar
  7. Folkman, J. and Cotran, R. S. 1976, Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Path., 16: 207–248.PubMedGoogle Scholar
  8. Folkman, J. 1971, Tumor angiogenesis: Therapeutic implications. N Engl. J. Med., 285: 1182–1186.PubMedCrossRefGoogle Scholar
  9. Folkman, J. and Shing, Y. 1992, Angiogenesis. J. Biol. Chem. 256: 10931–10934.Google Scholar
  10. Hallahan, T. W., Shapiro, R. and Vallee, B. L.1991, Dual site model for the organogenic activity of angiogenin. Proc. Natl. Acad. Sci. USA, 88: 2222–2226.PubMedCrossRefGoogle Scholar
  11. Hallahan, T. W., Shapiro, R. and Vallee, B. L. 1992, Importance of asparagine-61 and asparagine -109 to the angiogenic activity of human angiogenin. Biochemistry, 31: 8002–8029.Google Scholar
  12. Harper, J. W. and Vallee, B. L. 1988, Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin. Proc. Natl. Acad. Sci. USA, 85: 7139–7143.PubMedCrossRefGoogle Scholar
  13. Harper, J. W. and Vallee, B. L. 1989, A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry, 28: 1875–1884.PubMedCrossRefGoogle Scholar
  14. Hu, G.-F., Riordan, J. F. and Vallee, B. L. 1994, Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc. Natl. Acad. Sci. USA, 81: 12096–12100.CrossRefGoogle Scholar
  15. Hu, G.-F., Riordan, J. F. and Vallee, B. L. 1997, A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc. Natl. Acad. Sci. USA, 94: 2204–2209.PubMedCrossRefGoogle Scholar
  16. King, T.V. and Vallee, B.L. 1991, Neovascularization of the meniscus with angiogenin. J. Bone Joint Surg., 73-B: 587–590.Google Scholar
  17. Kraulis, P. J. 1991. MOLSCRIPT — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24: 946–950.CrossRefGoogle Scholar
  18. Leonidas, D. D., Shapiro, R., Irons, L. L., Russo, N. and Acharya, K. R. 1997, Crystal structures of Ribonuclease A complexes with 5′-Diphosphoadenosine 3′-phosphate and 5′-Diphosphoadenosine 2′-phosphate at 1.7 Å resolution. Biochemistry, 36: 5578–5588.PubMedCrossRefGoogle Scholar
  19. Lequin, O., Albaret, C., Bontems, F., Spik, G. and Lallemand, J. Y. 1996, Solution structure of bovine angiogenin by 1H nuclear magentic resonance spectroscopy. Biochemistry, 35, 8870–8880.PubMedCrossRefGoogle Scholar
  20. Lee, F.S., Shapiro, R. and Vallee, B. L. 1989, Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry, 28: 225–230.PubMedCrossRefGoogle Scholar
  21. Lee, F. S. and Vallee, B. L. 1989, Binding of placental ribonuclease inhibitor to the active site of angiogenin. Biochemistry, 28: 3556–3561.PubMedCrossRefGoogle Scholar
  22. Moroianu, J. and Riordan, J.F. 1994, Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc. Natl. Acad. Sci. USA., 91: 1677–1681.PubMedCrossRefGoogle Scholar
  23. Olson, K. A., French, T. C., Vallee, B. L. and Fett, J. W. 1994, A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res., 54: 4576–4579.PubMedGoogle Scholar
  24. Olson, K. A., Fett, J. W., French, T. C., Key, M. E. and Vallee, B. L. 1995, Angiogenin antagonists prevent tumor growth in vivo. Proc. Natl. Acad. Sci. USA, 92: 442–446.CrossRefGoogle Scholar
  25. Olson, K. A. and Fett, J. W. 1996, Prostatic carcinoma therapy with angiogenin antagonists. Proc. Amer. Assoc. Cane. Res., 37: 57.Google Scholar
  26. O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H. and Folkman, J. 1994, Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79: 315–328.PubMedCrossRefGoogle Scholar
  27. O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R. and Folkman, J. 1997, Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88: 277–285.PubMedCrossRefGoogle Scholar
  28. Polakowski, I. J., Lewis, M. K., Muthukkaruppan, V., Erdman, B., Kubai, L. and Auerbach, R. 1993, A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice. Am. J. Pathol., 143: 507–517.PubMedGoogle Scholar
  29. Russo, N., Shapiro, R., Acharya, K. R., Riordan, J. F. and Vallee, B. L. 1994, The role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc. Natl. Acad. Sci. USA, 91:2920–2924.PubMedCrossRefGoogle Scholar
  30. Russo, N., Acharya, K. R., Vallee, B. L. and Shapiro, R. 1996, A combined kinetic and modeling study of the catalytic center subsites of human angiogenin. Proc. Natl. Acad. Sci. USA, 93: 804–808.PubMedCrossRefGoogle Scholar
  31. Shapiro, R., Fox, E. A. and Riordan, J. F. 1989, Role of lysines and human angiogenin -chemical modification and site-directed mutagenesis. Biochemistry, 28: 1726–1732.PubMedCrossRefGoogle Scholar
  32. Shapiro, R., Harper, J.W., Fox, E. A., Jensen, H-W., Hein, F. and Uhlmann, E. 1988, Expression of Met-(-1) angiogenin in Escherichia coli. Anal. Biochem., 175: 450–461.PubMedCrossRefGoogle Scholar
  33. Shapiro, R., Strydom, D. J., Olson, K.A. and Vallee, B.L. 1987, Isolation of angiogenin from natural human plasma. Biochemistry, 26: 5141–5146.PubMedCrossRefGoogle Scholar
  34. Shapiro, R. and Vallee, B. L. 1987, Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. USA, 84: 2238–2241.PubMedCrossRefGoogle Scholar
  35. Shapiro, R. and Vallee, B. L. 1989, Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry, 28: 7401–7408.PubMedCrossRefGoogle Scholar
  36. Shapiro, R. and Vallee, B. L. 1992, Identification of functional arginines in human angiogenin by site-directed mutagenesis. Biochemistry, 31: 12477–12485.PubMedCrossRefGoogle Scholar
  37. Soncin, F. 1992, Angiogenin supports endothelial and fibroblast cell adhesion. Proc. Natl. Acad. Sci. USA, 89: 2232–2236.PubMedCrossRefGoogle Scholar
  38. Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F. and Vallee, B. L., 1985, Amino-acid sequence of human-tumor derived angiogenin. Biochemistry, 24: 5486–5494.PubMedCrossRefGoogle Scholar
  39. Vallee, B. L., Riordan, J. F., Lobb, R. R., Higachi, N., Fett, J. W., Crossley, G., Bühler, R., Budzik, G., Breddam, K., Bethune, J. L. and Alderman, E. M. 1985, Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimantal investigation and review. Experientia, 41: 1–15.PubMedCrossRefGoogle Scholar
  40. Waldmann, T.A. 1991, Monoclonal antibodies in diagnosis and therapy. Science, 252: 1657–1661.PubMedCrossRefGoogle Scholar
  41. Wlodawer, A., Bott, R. and Sjolin, L. 1982, The refined crystal structure of Ribonuclease A at 2.0 Å resolution. J. Biol. Chem., 257: 1325–1332.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • K. Ravi Acharya
    • 1
  • Demetres D. Leonidas
    • 1
  • Anastassios C. Papageorgiou
    • 1
  • Nello Russo
    • 2
  • Robert Shapiro
    • 2
    • 3
  1. 1.Department of Biology and BiochemistryUniversity of BathClaverton Down, BathUK
  2. 2.Center for Biochemical and Biophysical Sciences and MedicineHarvard Medical SchoolBostonUSA
  3. 3.Department of PathologyHarvard Medical SchoolBostonUSA

Personalised recommendations