Skip to main content
Book cover

Angiogenesis pp 165–178Cite as

Structural Studies on Angiogenin, a Protein Implicated in Neovascularization during Tumour Growth

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 298))

Abstract

Angiogenesis, the formation of new blood vessels, is an essential part of normal physiological processes such as embryonic growth, wound healing, and the cyclical development of the uterine endometrium. It also occurs in a variety of pathological conditions including arthritis, diabetic retinopathy, and tumour growth (Folkman and Cotran, 1976). Early observers had noted a proliferation of blood vessels in the vicinity of such tumours (see Vallee et al., 1985), and it was later proposed by Folkman (1971) that these tumours are totally dependent on angiogenesis for growth beyond a diameter of 1–2 mm. Angiogenesis is also thought to be a prerequisite for the development of metastases since it provides the means whereby cells disseminate from the original primary tumour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acharya, K. R., Shapiro, R., Allen, S. C., Riordan, J. F. and Vallee, B. L.1994, Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease. Proc. Natl. Acad. Sci. USA, 91: 2915–2919.

    Article  PubMed  CAS  Google Scholar 

  • Acharya, K. R., Shapiro, R., Riordan, J. F. and Vallee, B. L. 1995, Crystal structure of bovine angiogenin at 1.5 Å resolution. Proc. Natl. Acad. Sci. USA, 92: 2949–2953.

    Article  PubMed  CAS  Google Scholar 

  • Allen, S. C., Acharya, K. R., Palmer, K. A., Shaprio, R., Vallee, B. L. and Scheraga, H. A. 1994, A comparison of the predicted and X-ray structures of angiogenin. Implications for further studies of model building of homologous proteins. J. Prot. Chem., 13: 649–658.

    Article  CAS  Google Scholar 

  • Borah, B., Chen, C. W., Egan, W., Miller, M., Wlodawer, A. and Cohen, J. S. 1985, Nuclear magnetic resonance and neutron diffraction studies of the complex of RNase A with uridine vanadate, a transition state analog. Biochemistry 24: 2058–2067.

    Article  PubMed  CAS  Google Scholar 

  • Curran, T. P., Shapiro, R. and Riordan, J. F. 1993, Alteration of the enzymatic specificity of human angiogenin by site-directed mutagenesis. Biochemistry, 32: 2307–2313.

    Article  PubMed  CAS  Google Scholar 

  • Fett, J. W., Strydom, D. J., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F. and Vallee, B. L. 1985, Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry, 24: 5480–5486.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Cotran, R. S. 1976, Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Path., 16: 207–248.

    PubMed  CAS  Google Scholar 

  • Folkman, J. 1971, Tumor angiogenesis: Therapeutic implications. N Engl. J. Med., 285: 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. and Shing, Y. 1992, Angiogenesis. J. Biol. Chem. 256: 10931–10934.

    Google Scholar 

  • Hallahan, T. W., Shapiro, R. and Vallee, B. L.1991, Dual site model for the organogenic activity of angiogenin. Proc. Natl. Acad. Sci. USA, 88: 2222–2226.

    Article  PubMed  CAS  Google Scholar 

  • Hallahan, T. W., Shapiro, R. and Vallee, B. L. 1992, Importance of asparagine-61 and asparagine -109 to the angiogenic activity of human angiogenin. Biochemistry, 31: 8002–8029.

    Google Scholar 

  • Harper, J. W. and Vallee, B. L. 1988, Mutagenesis of aspartic acid-116 enhances the ribonucleolytic activity and angiogenic potency of angiogenin. Proc. Natl. Acad. Sci. USA, 85: 7139–7143.

    Article  PubMed  CAS  Google Scholar 

  • Harper, J. W. and Vallee, B. L. 1989, A covalent angiogenin/ribonuclease hybrid with a fourth disulfide bond generated by regional mutagenesis. Biochemistry, 28: 1875–1884.

    Article  PubMed  CAS  Google Scholar 

  • Hu, G.-F., Riordan, J. F. and Vallee, B. L. 1994, Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc. Natl. Acad. Sci. USA, 81: 12096–12100.

    Article  Google Scholar 

  • Hu, G.-F., Riordan, J. F. and Vallee, B. L. 1997, A putative angiogenin receptor in angiogenin-responsive human endothelial cells. Proc. Natl. Acad. Sci. USA, 94: 2204–2209.

    Article  PubMed  CAS  Google Scholar 

  • King, T.V. and Vallee, B.L. 1991, Neovascularization of the meniscus with angiogenin. J. Bone Joint Surg., 73-B: 587–590.

    CAS  Google Scholar 

  • Kraulis, P. J. 1991. MOLSCRIPT — a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr., 24: 946–950.

    Article  Google Scholar 

  • Leonidas, D. D., Shapiro, R., Irons, L. L., Russo, N. and Acharya, K. R. 1997, Crystal structures of Ribonuclease A complexes with 5′-Diphosphoadenosine 3′-phosphate and 5′-Diphosphoadenosine 2′-phosphate at 1.7 Å resolution. Biochemistry, 36: 5578–5588.

    Article  PubMed  CAS  Google Scholar 

  • Lequin, O., Albaret, C., Bontems, F., Spik, G. and Lallemand, J. Y. 1996, Solution structure of bovine angiogenin by 1H nuclear magentic resonance spectroscopy. Biochemistry, 35, 8870–8880.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F.S., Shapiro, R. and Vallee, B. L. 1989, Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry, 28: 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Lee, F. S. and Vallee, B. L. 1989, Binding of placental ribonuclease inhibitor to the active site of angiogenin. Biochemistry, 28: 3556–3561.

    Article  PubMed  CAS  Google Scholar 

  • Moroianu, J. and Riordan, J.F. 1994, Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc. Natl. Acad. Sci. USA., 91: 1677–1681.

    Article  PubMed  CAS  Google Scholar 

  • Olson, K. A., French, T. C., Vallee, B. L. and Fett, J. W. 1994, A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res., 54: 4576–4579.

    PubMed  CAS  Google Scholar 

  • Olson, K. A., Fett, J. W., French, T. C., Key, M. E. and Vallee, B. L. 1995, Angiogenin antagonists prevent tumor growth in vivo. Proc. Natl. Acad. Sci. USA, 92: 442–446.

    Article  CAS  Google Scholar 

  • Olson, K. A. and Fett, J. W. 1996, Prostatic carcinoma therapy with angiogenin antagonists. Proc. Amer. Assoc. Cane. Res., 37: 57.

    Google Scholar 

  • O’Reilly, M. S., Holmgren, L., Shing, Y., Chen, C., Rosenthal, R. A., Moses, M., Lane, W. S., Cao, Y., Sage, E. H. and Folkman, J. 1994, Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79: 315–328.

    Article  PubMed  Google Scholar 

  • O’Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R. and Folkman, J. 1997, Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88: 277–285.

    Article  PubMed  Google Scholar 

  • Polakowski, I. J., Lewis, M. K., Muthukkaruppan, V., Erdman, B., Kubai, L. and Auerbach, R. 1993, A ribonuclease inhibitor expresses anti-angiogenic properties and leads to reduced tumor growth in mice. Am. J. Pathol., 143: 507–517.

    PubMed  CAS  Google Scholar 

  • Russo, N., Shapiro, R., Acharya, K. R., Riordan, J. F. and Vallee, B. L. 1994, The role of glutamine-117 in the ribonucleolytic activity of human angiogenin. Proc. Natl. Acad. Sci. USA, 91:2920–2924.

    Article  PubMed  CAS  Google Scholar 

  • Russo, N., Acharya, K. R., Vallee, B. L. and Shapiro, R. 1996, A combined kinetic and modeling study of the catalytic center subsites of human angiogenin. Proc. Natl. Acad. Sci. USA, 93: 804–808.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Fox, E. A. and Riordan, J. F. 1989, Role of lysines and human angiogenin -chemical modification and site-directed mutagenesis. Biochemistry, 28: 1726–1732.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Harper, J.W., Fox, E. A., Jensen, H-W., Hein, F. and Uhlmann, E. 1988, Expression of Met-(-1) angiogenin in Escherichia coli. Anal. Biochem., 175: 450–461.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R., Strydom, D. J., Olson, K.A. and Vallee, B.L. 1987, Isolation of angiogenin from natural human plasma. Biochemistry, 26: 5141–5146.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R. and Vallee, B. L. 1987, Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. USA, 84: 2238–2241.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R. and Vallee, B. L. 1989, Site-directed mutagenesis of histidine-13 and histidine-114 of human angiogenin. Alanine derivatives inhibit angiogenin-induced angiogenesis. Biochemistry, 28: 7401–7408.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, R. and Vallee, B. L. 1992, Identification of functional arginines in human angiogenin by site-directed mutagenesis. Biochemistry, 31: 12477–12485.

    Article  PubMed  CAS  Google Scholar 

  • Soncin, F. 1992, Angiogenin supports endothelial and fibroblast cell adhesion. Proc. Natl. Acad. Sci. USA, 89: 2232–2236.

    Article  PubMed  CAS  Google Scholar 

  • Strydom, D. J., Fett, J. W., Lobb, R. R., Alderman, E. M., Bethune, J. L., Riordan, J. F. and Vallee, B. L., 1985, Amino-acid sequence of human-tumor derived angiogenin. Biochemistry, 24: 5486–5494.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, B. L., Riordan, J. F., Lobb, R. R., Higachi, N., Fett, J. W., Crossley, G., Bühler, R., Budzik, G., Breddam, K., Bethune, J. L. and Alderman, E. M. 1985, Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimantal investigation and review. Experientia, 41: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Waldmann, T.A. 1991, Monoclonal antibodies in diagnosis and therapy. Science, 252: 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Wlodawer, A., Bott, R. and Sjolin, L. 1982, The refined crystal structure of Ribonuclease A at 2.0 Å resolution. J. Biol. Chem., 257: 1325–1332.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acharya, K.R., Leonidas, D.D., Papageorgiou, A.C., Russo, N., Shapiro, R. (1998). Structural Studies on Angiogenin, a Protein Implicated in Neovascularization during Tumour Growth. In: Maragoudakis, M.E. (eds) Angiogenesis. NATO ASI Series, vol 298. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9185-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9185-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9187-7

  • Online ISBN: 978-1-4757-9185-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics