Skip to main content

Photonic Switching Architectures Based on Logic Devices (Free-Space Digital Optics)

  • Chapter
  • 128 Accesses

Part of the book series: Applications of Communications Theory ((ACTH))

Abstract

Photonic switching architectures that are based on logic devices have been under study since the early 1980s. Logic-based systems can be subdivided into two broad categories: (1) guided wave systems based on logic devices and (2) free-space systems based on logic devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Islam, C. E. Soccolich, S. T. Ho, R. E. Slusher, and J. R. Sauer, Ultrafast all-optical fiber soliton logic gates, in: OSA Proc. on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.) Vol. 8, pp. 98–194, Optical Society of America, Washington, D.C. (1991).

    Google Scholar 

  2. J. W. Goodman, Optics and an interconnect technology, in: Optical Processing and Computing (H. H. Arsenault, T. Szoplik, and B. Macukow, eds.), Academic Press, New York (1989).

    Google Scholar 

  3. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based on power and speed considerations, Appl. Opt. 27, 1742 (1988).

    Article  Google Scholar 

  4. K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New York (1984).

    MATH  Google Scholar 

  5. R. W. Hockney and C. R. Jesshope, Parallel Computers, Hilger, Bristol (1981).

    MATH  Google Scholar 

  6. T. Feng, A survey of interconnection networks, IEEE Comput. 14, 12–27 (1981).

    Article  Google Scholar 

  7. H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, Lexington, Mass. (1985).

    Google Scholar 

  8. W. P. Lidinsky, Network requirements for data traffic, in: Perspectives on Packetized Voice and Data Communications (IEEE Press, New York, 1991) pp. 5–10.

    Google Scholar 

  9. S. Weinstein, IEEE Spectrum November, 1987.

    Google Scholar 

  10. C.-L. Wu and T.-Y. Feng, Tutorial: Interconnection Networks for Parallel and Distributed Processing, IEEE Computer Society Press (1984).

    Google Scholar 

  11. G. M. Masson, G. C. Gingher, and S. Nakamura, A sampler of circuit switching networks, in: Computer, pp. 32–48, IEEE Press (1979).

    Google Scholar 

  12. H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153 (1977).

    Article  Google Scholar 

  13. J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771 (1981).

    Article  Google Scholar 

  14. C.-L. Wu and T.-Y. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29, 694 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. J. Cloonan, Topological equivalence of crossover networks and data manipulator networks, Appl. Opt. 28, 2494 (1989).

    Article  Google Scholar 

  16. D. S. Wise, Compact layouts of banyan/FFT networks, in: VLSI Systems and Computation (H. T. Kung, B. Sproull, and G. Steele, eds.), Computer Science Press, Rockville, Md. (1981).

    Google Scholar 

  17. J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, App. Opt. 27, 3155 (1988).

    Article  Google Scholar 

  18. T.-Y. Feng, Data manipulating functions in parallel processors and their implementations, IEEE Trans. Comput. C-23, 309 (1974).

    Article  MATH  Google Scholar 

  19. M. Decina, STM and ATM Switching Networks, course notes at Politecnico di Milano/ CEFRIEL, Milan, Italy.

    Google Scholar 

  20. C. Clos, A study of non-blocking switching networks. BSTJ March, 406 (1953).

    Google Scholar 

  21. V. E. Benes, On rearrangeable three-stage connecting networks, BSTJ September, 1481 (1962).

    Google Scholar 

  22. C.-L. Wu and T.-Y. Feng. The universality of the shuffle-exchange network, IEEE Trans. Comput. C-26, 458 (1977).

    Article  Google Scholar 

  23. D. K. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. L. Goke and A. Lipovski, Banyan networks for partitioning multiprocessing systems, Proc. First Annual Comput. Architecture Conf, IEEE, Piscataway, N.J. (1973).

    Google Scholar 

  25. K. E. Batcher, The flip network in STARAN, Proc. 1976 Int. Conf. Parallel Processing, IEEE, Piscataway, N.J. (1976).

    Google Scholar 

  26. H. J. Siegel, Analysis techniques for SIMD machine interconnection networks and the effects of processor address masks, IEEE Trans. Comput. C-26, 153 (1977).

    Article  MATH  Google Scholar 

  27. M. C. Pease, III, The indirect binary n-cube microprocessor array, IEEE Trans. Comput. C-26, 458 (1977).

    Article  MATH  Google Scholar 

  28. R. J. McMillen and H. J. Siegel, Routing schemes for the augmented data manipulator network in an MIMD system, IEEE Trans. Comput. C-31, 1202 (1982).

    Article  MATH  Google Scholar 

  29. G. B. Adams, III, and H. J. Siegel, The extra stage cube: A fault-tolerant interconnection network for supersystems, IEEE Trans. Comput. C-31, 443 (1982).

    Article  MATH  Google Scholar 

  30. A. Huang and S. Knauer, Starlite: A wideband digital switch, Globe Com ‘84 (IEEE 84CH2064–4), Vol. 1, p. 121 (1984).

    Google Scholar 

  31. H. S. Hinton, Architectural considerations for photonic switching networks, IEEE J. Sel. Areas Commun. SAC-6, 1209 (1988).

    Article  Google Scholar 

  32. G. W. Richards, to be published.

    Google Scholar 

  33. T. J. Cloonan, M. J. Herron, F. A. P. Tooley, F. B. McCormick, E. Kerbis, J. L. Brubaker, A. L. Lentine, and G. W. Richards, An all-optical implementation of a 3D crossover network, IEEE Photon. Tech. Lett. 2, 438–440 (1990).

    Article  Google Scholar 

  34. T. J. Cloonan and F. B. McCormick, Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).

    Article  Google Scholar 

  35. E. Kerbis, T. J. Cloonan, and F. B. McCormick, An all-optical realization of a 2 × 1 free-space switching node, IEEE Photon. Tech. Lett. 2, 600–602 (1990).

    Article  Google Scholar 

  36. H. Dammann and K. Gortler, High efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).

    Article  Google Scholar 

  37. U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Integrated Opt. 4, 159–167 (1982).

    Article  Google Scholar 

  38. R. L. Morrison and S. L. Walker, Progress in diffractive phase gratings for spot array generation, in: Optical Computing, 1991, Technical Digest Series, Vol. 6, pp. 144–147, Optical Society of America, Washington, D.C.

    Google Scholar 

  39. A. Huang, Parallel algorithms for optical digital computers, Proc. Tenth International Optical Computing Conference, IEEE Computer Society, Los Angeles (1983).

    Google Scholar 

  40. K.-H. Brenner, A. Huang, and N. Streibl, Digital optical computing with symbolic substitution, Appl. Opt. 25, 3054 (1986).

    Article  Google Scholar 

  41. M. J. Murdocca, Digital optical computing with one-rule cellular automata, Appl. Opt. 26, 682 (1987).

    Article  Google Scholar 

  42. T. J. Cloonan, Performance analysis of optical symbolic substitution, Appl. Opt. 27, 1701 (1988).

    Article  Google Scholar 

  43. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, The symmetric self electro-optic effect device, Postdeadline Papers, Conference on Lasers and Electro-Optics, Optical Society of America, Washington, D.C. (1987).

    Google Scholar 

  44. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, Jr., A. C. Gossard, and W. Wiegmann, Quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation, IEEE J. Quantum Electron. QE-21, 1462 (1985).

    Article  Google Scholar 

  45. T. J. Cloonan, Strengths and weaknesses of optical architectures based on symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 16–19, Optical Society of America, Washington, D.C. (1987).

    Google Scholar 

  46. K.-H. Brenner and G. Stucke, Programmable optical processor based on symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 6–8, Optical Society of America, Washington, D.C. (1987).

    Google Scholar 

  47. J. N. Mait and K.-H. Brenner, Optical systems for symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 12–15, Optical Society of America, Washington, D.C. (1987).

    Google Scholar 

  48. M. J. Murdocca, Theory and applications of free-space digital optical computing, Ph.D. dissertation, Rutgers University, New Brunswick, N.J. (1989).

    Google Scholar 

  49. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).

    Article  Google Scholar 

  50. M. J. Murdocca and T. J. Cloonan, Optical design of a digital switch, Appl. Opt. 28, 2505 (1989).

    Article  Google Scholar 

  51. H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153–161 (1971).

    Article  MATH  Google Scholar 

  52. D. L. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145–1155 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  53. J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771–780 (1981).

    Article  Google Scholar 

  54. A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543–1549(1985).

    Article  Google Scholar 

  55. T. Kumagai and K. Ikegaya, The two-dimensional inverse omega network, 1985 Int. Conf. Parallel Processing (D. Degroot, ed.), pp. 325–327 (1985).

    Google Scholar 

  56. S.-H. Lin, T. F. Krile, and J. F. Walkup, 2-D optical multistage interconnection networks, Digital Optical Computing (R. Arrathoon, ed.), SPIE 752, pp. 209–216 (1987).

    Chapter  Google Scholar 

  57. S.-H. Lin, T. F. Krile, and J. F. Walkup, Two-dimensional Clos optical interconnection network, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 98–101, Optical Society of America, Washington, D.C. (1987).

    Google Scholar 

  58. C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, App. Opt. 27, 202 (1988).

    Article  Google Scholar 

  59. G. Stucke, A complete 2D-shuffle/exchange stage for large ID data arrays, Optik 78, 84–85 (1988).

    Google Scholar 

  60. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuck, and T. C. Strand, Architectural implications of a digital optical processor, Appl. Opt. 23, 3465–3473 (1984).

    Article  Google Scholar 

  61. J. Giglmayr, Classification scheme for 3-D shuffle interconnection patterns, Appl. Opt. 28, 3120–3128 (1989).

    Article  Google Scholar 

  62. F. B. McCormick, T. J. Cloonan, and H. S. Hinton, Optical Switch, U.S. Patent 4,830,444.

    Google Scholar 

  63. A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, Quantum well optical tri-state devices, Appl. Opt. 29, 1157–1160 (1990).

    Article  Google Scholar 

  64. T.-Y. Feng, A survey of interconnection networks, Computer, December, 12–27 (1981).

    Google Scholar 

  65. H. S. Hinton, A nonblocking optical interconnection network using directional couplers, Proc. IEEE Globecom, Nov. 1984, pp. 885–890.

    Google Scholar 

  66. H. S. Hinton, Photonic switching using directional couplers, IEEE Trans. Commun. 25, 16(1987).

    MathSciNet  Google Scholar 

  67. T. Shimoe, K. Hajikano, and K. Murakami, Path-independent insertion loss optical space switch, Proc. OFC/IOOC ‘87.

    Google Scholar 

  68. A. R. Dias, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuck, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 000 (1988).

    Article  Google Scholar 

  69. J. W. Goodman, A. R. Dias, and L. M. Woody, Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms, Opt. Lett. 2, 1 (1978).

    Article  Google Scholar 

  70. A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, and A. Varma, Optical crossbar networks, IEEE Trans. Comput. 20, 50 (1987).

    Google Scholar 

  71. A. Dickinson and M. E. Prise, A free-space optical interconnection scheme, in: Optical Computing, Technical Digest Series, Vol. 9, pp. 132–135, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  72. T. J. Cloonan and A. L. Lentine, Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections, Appl. Opt. 30, 3721–3733 (1991).

    Article  Google Scholar 

  73. T. J. Cloonan, A free-space optical implementation of a feed-forward crossbar network, Appl. Opt. 29, 2006 (1990).

    Article  Google Scholar 

  74. J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, Appl. Opt. 27, 3155 (1988).

    Article  Google Scholar 

  75. M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, in: Optical Bistability IV (W. Firth, N. Peyghambarian, and A. Tallet, eds.), Les Editions De Physique, Les Ulis Cedex, France (1988).

    Google Scholar 

  76. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).

    Article  Google Scholar 

  77. J. E. Midwinter, A novel approach to the design of optically activated wideband switching matrices, IEEE Proc. J. 134, 261 (1987).

    Google Scholar 

  78. A. A. Sawchuck and I. Glaser, Geometries for optical implementations of the perfect shuffle, Optical Computing 88, SPIE Vol. 963, pp. 270–282 (1988).

    Article  Google Scholar 

  79. A. W. Lohmann, W. Stork, and G. Stucke, Optical perfect shuffle, Appl. Opt. 25, 1530 (1986).

    Article  Google Scholar 

  80. A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543 (1986).

    Article  Google Scholar 

  81. G. Eichmann and Y. Li, Compact optical generalized perfect shuffle, Appl. Opt. 26, 1167 (1987).

    Article  Google Scholar 

  82. K.-H. Brenner and A. Huang, Optical implementations of the perfect shuffle interconnection, Appl. Opt. 27, 135 (1988).

    Article  Google Scholar 

  83. Q. W. Song and F. T. S. Yu, Generalized perfect shuffle using optical spatial filtering, Appl. Opt. 27, 1222 (1988).

    Article  Google Scholar 

  84. T. Kumagai and K. Ikegaya, The two-dimensional inverse omega network, Proc. 1985 Int. Conf. Parallel Processing, pp. 325–327, IEEE Computer Society Press (1985).

    Google Scholar 

  85. S.-H. Lin, T. F. Krile, and J. F. Walkup, 2-D optical multistage interconnection networks, Digital Optical Computing, SPIE Vol. 752, p. 209 (1987).

    Article  Google Scholar 

  86. M. G. Taylor and J. E. Midwinter, Two-dimensional perfect shuffle networks, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 180–183, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  87. Y. J. Sheng, Light effective 2-D optical perfect shuffle using Fresnel mirrors, Appl. Opt. 28, 3290 (1989).

    Article  Google Scholar 

  88. C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, Appl. Opt. 27, 202 (1988).

    Article  Google Scholar 

  89. D. S. Wise, Compact layouts of banyan/FFT networks, in: VLSI Systems and Computation (H. T. Kung, B. Sproull, and G. Steele, eds.), Computer Science Press, Rockville, Md. (1981).

    Google Scholar 

  90. T. J. Cloonan, Topological equivalence of crossover networks and data manipulator networks, Appl. Opt. 28, 2494 (1989).

    Article  Google Scholar 

  91. H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153 (1971).

    Article  MATH  Google Scholar 

  92. D. L. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145(1975).

    Article  MathSciNet  MATH  Google Scholar 

  93. M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, J. Phys. (Paris) Colloq. C2 Suppl. 6, 49, 15–18 (1988).

    Google Scholar 

  94. F. B. McCormick and M. E. Prise, Optical circuitry for free-space interconnections, Appl. Opt. 29, 2013–2018 (1990).

    Article  Google Scholar 

  95. T. J. Cloonan and F. B. McCormick, Photonic switching applications of two-dimensional and three-dimensional crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).

    Article  Google Scholar 

  96. T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Technol. Lett. 2, 438–440 (1990).

    Article  Google Scholar 

  97. A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, Quantum well optical tri-state devices, Appl. Opt. 29, 1157 (1990).

    Article  Google Scholar 

  98. M. J. Murdocca, Theory and applications of free-space digital optical computing, Ph.D. dissertation, Rutgers University, New Brunswick, N.J. (1989).

    Google Scholar 

  99. M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).

    Article  Google Scholar 

  100. E. Kerbis, T. J. Cloonan, and F. B. McCormick, An all-optical realization of a 2 x 1 free-space switching node, IEEE Photon. Tech. Lett. 2, 600–602 (1990).

    Article  Google Scholar 

  101. T. J. Cloonan and M. J. Herron, Optical implementation and performance of one-dimensional and two-dimensional trimmed inverse augmented data manipulator networks for multiprocessor computer systems, Opt. Eng. 28, 305–314 (1989).

    Article  Google Scholar 

  102. T.-Y. Feng, Data manipulating functions in parallel processors and their implementations, IEEE Trans. Comput. C-23, 309–318 (1974).

    Article  Google Scholar 

  103. Siegel, H. J.,Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, Lexington, Mass. (1985).

    Google Scholar 

  104. H. Dammann and K. Gortler, High efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).

    Article  Google Scholar 

  105. U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Integrated Opt. 4, 159–167 (1982).

    Article  Google Scholar 

  106. R. L. Morrison and S. L. Walker, Progress in diffractive phase gratings for spot array generation, in: Optical Computing, 1991, Technical Digest Series, Vol. 6, pp. 144–147, Optical Society of America, Washington, D.C.

    Google Scholar 

  107. K. E. Batcher, Sorting networks and their applications, 1968 Spring Joint Computer Conference, AFIPS Proc. Vol. 32, pp. 307–314.

    Google Scholar 

  108. K. E. Batcher, The flip network in STARAN, Proc. 1976 Int. Conf. Parallel Processing, pp. 65–71 (1976).

    Google Scholar 

  109. A. Huang and S. Knauer, Starlite: A wideband digital switch, GlobeCom ’84 (IEEE 84CH2064–4), Vol. 1, p. 121 (1984).

    Google Scholar 

  110. M. J. Murdocca and T. J. Cloonan, Optical design of a digital switch, Appl. Opt. 28, 2505 (1989).

    Article  Google Scholar 

  111. D. Knuth, The Art of Computer Programming, Vol. 3, p. 237, Addison Wesley, Reading, Mass. (1973).

    Google Scholar 

  112. G. W. Richards and F. Hwang, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L. (1993). Photonic Switching Architectures Based on Logic Devices (Free-Space Digital Optics). In: An Introduction to Photonic Switching Fabrics. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9171-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9171-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9173-0

  • Online ISBN: 978-1-4757-9171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics