Optical Logic Devices

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)

Abstract

Free-space digital optics relies on optical devices which may be required to play the same role as a transistor in digital electronics. In addition to being an optical port, i.e., a modulator or emitter and a detector, they may also be required to act as a thresholding device. Such devices are called optically bistable (OB). OB devices are optical elements which, over some range of light input powers, have two possible output states. The range of powers over which they are bistable corresponds to a region of hysteresis and is bounded by two discontinuities at which switching between the two states can occur. Such switching can be induced by holding close to one of these discontinuities and making an incremental change in the total light input. This power increment can derive from an independent (signal) input. It is possible to obtain a change in output larger than the signal input and hence achieve digital gain.

Keywords

Switching Time Logic Gate Signal Beam Optical Bistability Optical Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. C. Walker, tutorial review, ICO Topical Meeting on Optical Computing, Toulon, 1988; also, A comparison of optically nonlinear phenomena in the context of optical information processing, Opt. Comput. Process. 1(1), 91 96 (1991).Google Scholar
  2. 2.
    B. S. Wherrett, A. C. Walker, and F. A. P. Tooley, Nonlinear refraction for CW optical bistability, in: Optical Nonlinearities and Instabilities in Semiconductors (H. Haug, ed.), Academic Press, New York (1988).Google Scholar
  3. 3.
    S. R. Friberg and R. W. Smith, Non-linear optical glasses for ultrafast optical switches, IEEE J. Quantum Electron. QE-23, 2089 (1987).CrossRefGoogle Scholar
  4. 4.
    J. D. Valera, A. Darsi, A. C. Walker, W. Knug, E. Miao, M. Derstine, and J. N. Polky, Observation of self-lensing in a 4BCMU-Polydacetylene thin-film wave-guide, Electron. Lett. 26, 222 (1990).CrossRefGoogle Scholar
  5. 5.
    A. Yariv, Introduction to Optical Electronics, Holt, Rinehart & Winston, New York (1976).Google Scholar
  6. 6.
    D. A. B. Miller, C. T. Seaton, M. E. Prise, and S. D. Smith, InSb devices: transphasors with high gain, bistable switches and sequential logic gates, Phys. Rev. Lett. 47, 197 (1981).CrossRefGoogle Scholar
  7. 7.
    A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Matthew, A. K. Kar, M. R. Taghizadeh, and S. D. Smith, InSb devices: Transphasors with high gain, bistable switches, and sequential logic gates, Philos. Trans. R. Soc. London Ser. A 313, 357 (1984).CrossRefGoogle Scholar
  8. 8.
    D. S. Chemla, D. A. B. Miller, and S. Schmitt-Rink, Nonlinear optical properties in semiconductor quantum wells, in: Optical Nonlinearities and Instabilities in Semiconductors (H. Haug, ed.), Academic Press, New York (1988).Google Scholar
  9. 9.
    S. W. Koch, Optical instabilities in semiconductors: Theory, in: Optical Nonlinearities and Instabilities in Semiconductors (H. Haug, ed.), Academic Press, New York (1988).Google Scholar
  10. 10.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Weigmann, The quantum well self-electro-optic effect device: Optoelectronic bistability and oscillation, and self linearized modulation, IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).CrossRefGoogle Scholar
  11. 11.
    D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, Electric field dependence of optical properties of semiconductor quantum wells: Physics and applications, in: Optical Non-linearities and Instabilities in Semiconductors (H. Haug, ed.), Academic Press, New York (1988).Google Scholar
  12. 12.
    See, e.g., S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Linear and non-linear optical-properties of semiconductor quantum wells, Adv. Phys. 38, 89–188 (1989).CrossRefGoogle Scholar
  13. 13.
    W. Franz, Ein fluß eines elektrischen Feldes auf eine optische Absorptionskante, Z. Naturforsch. 13a, 484 (1958).MATHGoogle Scholar
  14. 14.
    L. V. Keldysh, The effect of a strong electric field on the optical properties of insulating crystals, Sov. Phys. JTEP 7, 788 (1958).Google Scholar
  15. 15.
    D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, The relation between electroabsorp-tion in semiconductors and in quantum wells: The quantum confined Franz-Keldysh effect, Phys. Rev. B 33, 6976–6981 (1986).CrossRefGoogle Scholar
  16. 16.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Band-edge electroabsorption in quantum well structures: The quantum confined Stark effect, Phys. Rev. Lett. 53, 2173 2175 (1984).CrossRefGoogle Scholar
  17. 17.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Electric field dependence of optical absorption near the band gap of quantum well structures, Phys. Rev. B 32, 1043–1060 (1985).CrossRefGoogle Scholar
  18. 18.
    I. Bar-Joseph, C. Klingshirn, D. A. B. Miller, D. S. Chemla, U. Koren, and B. I. Miller, Quantum confined Stark effect in InGaAs/InP quantum wells grown by organometallic vapor phase epitaxy, Appl. Phys. Lett. 50, 1010 (1987).CrossRefGoogle Scholar
  19. 19.
    I. Bar-Joseph, J. E. Zucker, B. I. Miller, U. Koren, and D. S. Chemla, Compositional dependence of the quantum confined Stark effect in quaternary quantum wells, in: Topical Meeting on Quantum Wells for Optics and Optoelectronics, 1989 Technical Digest Series, Vol. 10, pp. 102–104, Optical Society of America, Washington, D.C.Google Scholar
  20. 20.
    E. C. Carr, T. H. Wood, C. A. Burrus, Jr., and T. H. Chiu, Analysis of the quantum confined Stark effect in GaSb/AlGaSb multiple quantum wells, Appl. Phys. Lett. 53, 2305–2307 (1988).CrossRefGoogle Scholar
  21. 21.
    M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides, Appl. Phys. Lett. 50, 1098–1100 (1987).CrossRefGoogle Scholar
  22. 22.
    J. Bleuse, G. Bastard, and P. Voisin, Electric-field induced localization and oscillatory electro-optical properties of semiconductor superlattices, Phys. Rev. Lett. 60, 220–223 (1988).CrossRefGoogle Scholar
  23. 23.
    I. Bar-Joseph, K. W. Goosen, J. M. Kuo, R. F. Kopf, D. A. B. Miller, and D. S. Chemla, Room-temperature electroabsorption and switching in a GaAs/AlGaAs superlattice, Appl. Phys. Lett. 55, 340–342 (1989).CrossRefGoogle Scholar
  24. 24.
    J. Khurgin, Novel configuration of self electro-optic effect device based on asymmetric quantum wells, Appl. Phys. Lett. 53, 779–781 (1988).CrossRefGoogle Scholar
  25. 25.
    K. Nishi and T. Hiroshima, Enhancement of quantum confined Stark effect in a graded gap quantum well, Appl. Phys. Lett. 51, 320 322 (1987).Google Scholar
  26. 26.
    D. A. B. Miller, Optical bistability in self electro-optic effect devices with asymmetric quantum wells, Appl. Phys. Lett. 54, 202–204 (1989).CrossRefGoogle Scholar
  27. 27.
    K. W. Goosen, E. A. Cardidi, T. Y. Chang, J. B. Stark, D. A. B. Miller, and R. A. Morgan, Observation of room temperature blue shift and bistability in a strained InGaAs-GaAs(111) self electro-optic effect device, Appl. Phys. Lett. 56, 715–717 (1990).CrossRefGoogle Scholar
  28. 28.
    D. S. Chemla, I. Bar-Joseph, J. M. Kuo, T. Y. Chang, C. Klingshirn, G. Livescu, and D. A. B. Miller, Modulation of absorption in field effect quantum well structure, IEEE J. Quantum Electron. QE-24, 1664–1676 (1988).CrossRefGoogle Scholar
  29. 29.
    D. S. Chemla, I. Bar-Jospeh, C. Klingshirn, D. A. B. Miller, J. M. Kuo, and T. Y. Chang, Optical reading of field effect transistors by phase space absorption quenching in a single InGaAs quantum well conducting channel, Appl. Phys. Lett. 50, 585–587 (1987).CrossRefGoogle Scholar
  30. 30.
    A. Katalsky, J. A. Abeles, and R. F. Leheny, Novel optoelectronic single quantum well devices based on electron bleaching of exciton absorption, Appl. Phys. Lett. 50, 707–710 (1987).Google Scholar
  31. 31.
    M. Wegener, I. Bar-Joseph, T. Y. Chang, J. M. Kuo, and D. S. Chemla, Electro-absorption and refraction by electron transfer in asymmetric modulation-doped multiple quantum well structures, in: Topical Meeting on Quantum Wells for Optics and Optoelectronics, 1989 Technical Digest Series, Vol. 10, pp. 235–238, Optical Society of America, Washington, D.C.Google Scholar
  32. 32.
    M. Wegener, T. Y. Chang, J. E. Zucker, K. L. Jones, N. J. Sauer, and D. S. Chemla, Low voltage intensity modulation by electron transfer in a multiple quantum well/electron reservoir waveguide, IEEE 1989 LEOS Annual Meeting. Google Scholar
  33. 33.
    For a review of quantum well modulators, see: T. H. Wood, Multiple quantum well waveguide modulators, IEEE J. Lightwave Technol. LT-6, 743–757 (1988).CrossRefGoogle Scholar
  34. 34.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press, Elmsford, N.Y. (1980).Google Scholar
  35. 35.
    F. S. Felber and J. H. Marburger, Theory of nonresonant multistable optical devices, Appl. Phys. Lett. 28, 731 (1976).CrossRefGoogle Scholar
  36. 36.
    B. S. Wherrett, Semiconductor optical bistability: Toward the optical computer, in: Nonlinear Optics: Materials and Devices (C. Flytzanis and J. L. Oudar, eds.), Springer-Verlag, Berlin (1986).Google Scholar
  37. 37.
    F. V. Karpushko and G. V. Sinitsyn, The anomalous nonlinearity and optical bistability in thin-film interference structures, Appl. Phys. B 28, 137 (1982).Google Scholar
  38. 38.
    O. S. Heavens, Optical Properties of Thin Solid Films, Butterworths, London (1955).Google Scholar
  39. 39.
    I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, and S. D. Smith, Dynamics of thermally induced optical bistability, IEEE J. Quantum Electron. QE-22, 2224 (1986).CrossRefGoogle Scholar
  40. 40.
    D. J. Hagan, H. A. MacKenzie, J. J. E. Reid, A. C. Walker, and F. A. P. Tooley, Spot size dependence of switching power for an optically bistable InSb element, Appl. Phys. Lett. 47, 203 (1985).CrossRefGoogle Scholar
  41. 41.
    G. Buller, C. R. Paton, S. D. Smith, and A. C. Walker, Optically bistable nonlinear interference filters for use with non-infrared laser diodes, Opt. Commun. 70, 522 (1989).CrossRefGoogle Scholar
  42. 42.
    E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smith, S. Guha, and T. F. Boggess, 2 photon-absorption, non-linear refraction and optical limiting in semiconductors, Opt. Eng. 24, 613 (1985)Google Scholar
  43. 42a.
    E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smith, S. Guha, and T. F. Boggess, J. Opt. Soc. Am. B 52, 1980 (1988).CrossRefGoogle Scholar
  44. 43.
    P. D. Atherton, N. K. Reay, J. Ring, and T. R. Hicks, Tunable Fabry-Perot niters, Opt. Eng. 20, 806 (1981).CrossRefGoogle Scholar
  45. 44.
    J. L. Jewell, Y. H. Lee, S. L. McCall, J. P. Harbison, and L. T. Florez, High-finesse (Al,Ga)As interference filters grown by molecular-beam epitaxy, Appl. Phys. Lett. 53, 640 (1988).CrossRefGoogle Scholar
  46. 45.
    D. A. B. Miller, S. D. Smith, and A. M. Johnston, Optical bistability and signal amplification in a semiconductor crystal: applications of new low-power nonlinear effects of InSb, Appl. Phys. Lett. 35, 658 (1979).CrossRefGoogle Scholar
  47. 46.
    H. A. McKenzie, A. Iltaif, J. I. L. Hughes, J. J. Hunter, and D. Ronaldson, Novel optically bistable optoelectronic device for inframed signal processing, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 26–31, Optical Society of America, Washington, D.C. (1989).Google Scholar
  48. 47.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, and W. Wiegmann, Optical bistability in semiconductors, Appl. Phys. Lett. 35, 6 (1979).CrossRefGoogle Scholar
  49. 48.
    U. Olin, Model for optical bistability in GaAs/AlGaAs Fabry-Perot etalons including diffraction, carrier diffusion and head conductor, J. Opt. Soc Am. B 7, 35 (1990).CrossRefGoogle Scholar
  50. 49.
    J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Use of a single nonlinear Fabry Perot étalon as optical logic gates, Appl. Phys. Lett. 44, 172–174 (1984).CrossRefGoogle Scholar
  51. 50.
    E. Garmire, J. H. Marburger, S. D. Allen, and H. G. Winful, Transient response of hybrid bistable optical devices, Appl. Phys. Lett. 34, 374–376 (1979).CrossRefGoogle Scholar
  52. 51.
    J. A. Goldstone and E. M. Garmire, On the dynamic response of nonlinear Fabry-Perot interferometers, IEEE. J. Quantum Electron. QE-17, 366–374 (1981).CrossRefGoogle Scholar
  53. 52.
    S. D. Smith, A. C. Walker, F. A. P. Tooley, and B. S. Wherrett, The demonstration of restoring digital optical logic, Nature 325, 6099 (1987).Google Scholar
  54. 53.
    J. Y. Bigot, A. Daunois, R. Leonelli, M. Sence, J. G. H. Mathew, S. D. Smith, and A. C. Walker, Nanosecond switching of bistable ZnSe interference filters at room temperature, Appl. Phys. Lett. 49, 844 (1986).CrossRefGoogle Scholar
  55. 54.
    I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, and S. D. Smith, Dynamics of thermally induced optical bistability, IEEE J. Quantum Electron. QE-22, 2224 (1986).CrossRefGoogle Scholar
  56. 55.
    J. Y. Bigot, F. Fidorra, C. Klingshirn, and J. B. Grun, Memory effects and dynamics of optical bistability in CuCl, IEEE J. Quantum Electron. QE-21, 1480 (1985).CrossRefGoogle Scholar
  57. 56.
    M. Dagenais and W. F. Sharfin, Picojoule, subnanosecond, all-optical switching using bound excitons in CdS, Appl. Phys. Lett. 46, 230 (1985).CrossRefGoogle Scholar
  58. 57.
    M. Dagenais and H. G. Winful, Low-power transverse optical bistability near bound excitons in cadmium sulfide, Appl. Phys. Lett. 44, 574 (1984).CrossRefGoogle Scholar
  59. 58.
    M. Dagenais, Optical hysteresis in fast transient experiments near the band gap of cadmium sulfide, Appl. Phys. Lett. 45, 1267 (1984)CrossRefGoogle Scholar
  60. 58a.
    K. Bohnert, H. Kalt, and C. Klingshirn, Intrinsic absorptive optical bistability in CdS, Appl. Phys. Lett. 43, 1088 (1983).CrossRefGoogle Scholar
  61. 59.
    M. Dagenais and W. F. Sharfin, Cavityless optical bistability due to light-induced absorption in cadmium sulfide, Appl. Phys. Lett. 45, 210 (1984).CrossRefGoogle Scholar
  62. 60.
    C. Klingshirn, M. Wagener, C. Dornfeld, M. Lambsdorff, J. Y. Bigot, and F. Fidorra, Optical Bistability 3, Proceedings of Topical Meeting, Arizona, December, p. 129 (1986).CrossRefGoogle Scholar
  63. 61.
    A. K. Kar and B. S. Wherrett, Thermal dispersive optical bistability and absorptive bistability in bulk ZnSe, J. Opt. Soc. Am. B 3, 346 (1986).CrossRefGoogle Scholar
  64. 62.
    M. R. Taghizadeh, I. Janossy, and S. D. Smith, Optical bistability in bulk ZnSe due to increasing absorption and self-focusing, Appl. Phys. Lett. 46, 331 (1985).CrossRefGoogle Scholar
  65. 63.
    I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, and S. D. Smith, Thermally induced optical bistability in thin-film devices, IEEE J. Quantum Electron. QE-21g, 1447 (1985).CrossRefGoogle Scholar
  66. 64.
    G. P. Golubev, V. S. Dneprovkii, Z. D. Kovalyuk, and V. A. Stadnik, Sov. Phys. Solid State 27, 265 (1985).Google Scholar
  67. 65.
    J. Hajto and I. Janossy, Optical bistability observed in amorphous semiconductor films, Philos. Mag. £47, 347 (1983).Google Scholar
  68. 66.
    S. L. McCall and H. M. Gibbs, 1978 OSA Annual Meeting.Google Scholar
  69. 67.
    E. Spiller, Saturable optical resonator, J. Appl. Phys. 43, 1673 (1972).CrossRefGoogle Scholar
  70. 68.
    J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Use of a single nonlinear Fabry Perot étalon as optical logic gates, Appl. Phys. Lett. 44, 2 (1984).CrossRefGoogle Scholar
  71. 69.
    A. D. Lloyd, I. Janossy, H. A. McKenzie, and B. S. Wherrett, CW optical bistability in non-absorbing liquids and liquid-crystals using HeNe and diode lasers, Opt. Commun. 61, 339 (1987).CrossRefGoogle Scholar
  72. 70.
    S. S. Tarng, H. M. Gibbs, J. L. Jewell, N. Peyghambarian, A. C. Gossard, T. Venkatesan, and W. Wiegmann, Use of a diode-laser to observe room-temperature, low-power optical bistability in a GaAs-AlGaAs etalon, Appl. Phys. Lett. 44, 360 (1984).CrossRefGoogle Scholar
  73. 71.
    J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, and W. Wiegmann, Regenerative pulsations from an intrinsic bistable optical device, Appl. Phys. Lett. 40, 291 (1982).CrossRefGoogle Scholar
  74. 72.
    D. A. B. Miller, A. C. Gossard, and W. Wiegmann, Optical bistability due to increasing absorption, Opt. Lett. 9, 162 (1982).CrossRefGoogle Scholar
  75. 73.
    A. C. Walker, J. S. Aitchison, S. T. D. Ritchie, and P. M. Rodgers, Intrinsic optical bistability and multistability in a passive GaAlAs wave-guide, Electron. Lett. 22, 366 (1986).CrossRefGoogle Scholar
  76. 74.
    A. D. Lloyd, Ph.D. thesis, Heriot-Watt University (1988).Google Scholar
  77. 75.
    A. Miller, D. Craig, and G. Steward, Technical Digest OSA Topical Meeting on Optical Bistability, Tucson, December (1985).Google Scholar
  78. 76.
    Z. F. Zhu and E. M. Garmire, Optical bistability in BDN dye, IEEE J. Quantum Electron. QE-19, 1495 (1983).CrossRefGoogle Scholar
  79. 77.
    H. J. Eichler, Optical multistability in silicon observed with a CW laser at 1.06 microns, Opt. Commun. 45, 62 (1983).CrossRefGoogle Scholar
  80. 78.
    J. P. Hermann and P. W. Smith, Proc. XI Int. Quantum Electron. Conf., Boston, p. 656 (1980).Google Scholar
  81. 79.
    C. D. Poole and E. M. Garmire, Bandgap resonant optical non-linearities in InAs and their use in optical bistability, IEEE J. Quantum Electron. QE-21, 1370 (1985).CrossRefGoogle Scholar
  82. 80.
    F. A. P. Tooley, A. C. Walker, and S. D. Smith, The external switching of intrinsic optically bistable devices by incoherent illumination, IEEE J. Quantum Electron. QE-21, 1340(1985).CrossRefGoogle Scholar
  83. 81.
    B. S. Wherrett, F. A. P. Tooley, and S. D. Smith, Absorption switching and bistability in InSb, Opt. Commun. 52, 301 (1984).CrossRefGoogle Scholar
  84. 82.
    J. J. E. Reid, Ph.D. thesis, Heriot-Watt University (1985).Google Scholar
  85. 83.
    A. K. Kar, J.-G. H. Mathew, S. D. Smith, B. Davis, and W. Prettl, Optical bistability in InSb at room temperature with 2-photon excitation, Appl. Phys. Lett. 42, 334 (1983).CrossRefGoogle Scholar
  86. 84.
    J. Hunter, Ph.D. thesis, Heriot-Watt University (1986).Google Scholar
  87. 85.
    D. Craig, M. R. Dyball, and A. Miller, Thermally induced optical bistability in CdHgTe, Opt. Commun. 52, 383 (1985).CrossRefGoogle Scholar
  88. 86.
    D. Craig, A. K. Kar, J.-G. H. Mathew, and A. Miller, 2-photon induced optical bistability in CdHmTe at room temperature, IEEE J. Quantum Electron. QE-21, 1363 (1985).CrossRefGoogle Scholar
  89. 87.
    A. Miller, G. Parry, and R. Daley, Low-power non-linear Fabry Perot reflection in CdHgTe at 10 microns, IEEE J. Quantum Electron. QE-20, 710 (1984).CrossRefGoogle Scholar
  90. 88.
    C. Staupendahl and K. Schindler, Optical tuning of a tellurium cavity—optical modulation and bistability in the infra-red region at room temperature, Opt. Quantum Electron. 14, 157 (1982).CrossRefGoogle Scholar
  91. 89.
    I. L. Golik, A. V. Grigoryants, M. I. Elinson, and Y. U. Balkarei, Hysteresis and nonlinear thermooptic waves in a semiconductor Fabry-Perot interferometer, Opt. Commun. 46, 51 (1983).CrossRefGoogle Scholar
  92. 90.
    A. Glass, LLNL Laser Programme Annual Report, UCRL-50021–74, p. 256 (1974).Google Scholar
  93. 91.
    M. N. Islam, Ultrafast all-optical logic gates based on soliton trapping in fibers, Opt. Lett. 14, 1257 (1989).CrossRefGoogle Scholar
  94. 92.
    M. N. Islam, All-optical cascadable NOR gate with gain, Opt. Lett. 15, 417 (1990).CrossRefGoogle Scholar
  95. 93.
    G. L. Baker, S. Etemad, and F. Kajzar, SPIE 824, 102 (1987)Google Scholar
  96. 93a.
    see also S. T. Kowell, L. Y. Zhang, and L. M. Hayden, Organic and polymeric thin-films for non-linear optics, Opt. Eng. 26, 107 (1987).Google Scholar
  97. 94.
    G. M. Carter, M. K. Thakur, Y. J. Chen, and J. V. Hryniewicz, Time and wavelength resolved non-linear optical spectroscopy of a polydiacetylene in the solid-state using picosecond dye-laser pulses, Appl. Phys. Lett. 47, 457 (1985).CrossRefGoogle Scholar
  98. 95.
    D. C. Hanna, M. A. Yuratich, and D. Cotter, Nonlinear Optics of Free Atoms and Molecules, p. 181, Springer-Verlag, Berlin (1979).Google Scholar
  99. 96.
    A. Mysyrowicz, N. Hulin, A. Antonetti, A. Migus, W. T. Masselink and H. Morkoc, Dressed excitons in a multiple-quantum-well-structure—evidence for an optical Stark-effect with femto-second response time, Phys. Rev. Lett. 56, 2748 (1986).CrossRefGoogle Scholar
  100. 97.
    R. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W. T. Masselink, H. Morkoc, H. M. Gibbs, and N. Peyghambarian, Ultrafast all-optical gate with subpicosecond on and off response time, Appl. Phys. Lett. 49, 749 (1986).CrossRefGoogle Scholar
  101. 98.
    B. Honerlage, B. Levy, R. Grun, J. B. Klingshirn, and K. Bohnent, The dispersion of excitons, polaritons, and biexcitons in direct-gap semiconductors, Phys. Rep. 124, 161 (1985).CrossRefGoogle Scholar
  102. 99.
    N. Peyghambarian, H. M. Gibbs, M. C. Rushford, and D. A. Weinberger, Observation of biexcitonic optical bistability and optical limiting in CuCl, Phys. Rev. Lett. 51, 1692 (1983).CrossRefGoogle Scholar
  103. 100.
    S. H. Park, J. F. Morhance, A. D. Jeffery, R. A. Morgan, A. Chavez-Pirson, H. M. Gibbs, S. W. Koch, and N. Peyghambarian, Measurements of room-temperature band-gap-resonant optical non-linearities of GaAs/AlGaAs multiple quantum wells and bulk GaAs, Appl. Phys. Lett. 52, 1201 (1988).CrossRefGoogle Scholar
  104. 101.
    G. R. Olbright and N. Peyghambarian, Epitaxial-growth and x-ray diffraction analysis of single-crystal thin-films of CuCl, Solid State Commun. 58, 332 (1986).CrossRefGoogle Scholar
  105. 102.
    L. C. West, Ph.D. thesis, UCRL-53681 (1985).Google Scholar
  106. 103.
    L. C. West, Picosecond integrated optical logic, IEEE Trans. Comput. Dec, 34 (1987).Google Scholar
  107. 104.
    D. S. Chemla, D. A. B. Miller, and S. Schmitt-Rink, Nonlinear optical properties of semiconductor quantum wells, in: Optical Nonlinearities and Instabilities in Semiconductors (H. Haug, ed.), p. 83, Academic Press, New York (1988).CrossRefGoogle Scholar
  108. 105.
    C. Dornfield and J. M. Hvam, Technical Digest of the OSA Topical Meeting on Optical Bistability, Aussois, France, p. 120 (1988).Google Scholar
  109. 106.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Weigmann, T. H. Wood, and C. A. Burns, Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device, Appl Phys. Lett. 45, 13–15 (1984).CrossRefGoogle Scholar
  110. 107.
    D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, Integrated quantum well self electro-optic effect device: 2 × 2 array of optically bistable switches, Appl. Phys. Lett. 49, 821–823 (1986).CrossRefGoogle Scholar
  111. 108.
    G. Livescu, D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, Spatial light modulator and optical dynamic memory using integrated self-electro-optic effect devices, Opt. Lett. 13, 297–299 (1988).CrossRefGoogle Scholar
  112. 109.
    For a discussion of the requirements of digital optical logic devices, see: D. A. B. Miller, Optical switching devices: Some basic concepts, in: Optical Computing (F. A. P. Tooley and B. S. Wherrett, eds.), pp. 55–70, Hilger, New York and Bristol, England (1989).Google Scholar
  113. 110.
    A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, Symmetric self-electro-optic effect device: Optical set reset latch, differential logic gate, and differential modulator/detector, IEEE J. Quantum Electron. QE-25, 1928 1936(1989).CrossRefGoogle Scholar
  114. 111.
    D. A. B. Miller, U.S. Patent 4546244 (1985); U.S. Patent 4716449 (1987).Google Scholar
  115. 112.
    D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Shunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, Integrated quantum well modulator, field effect transistor, and optical detector, IEEE Photon. Technol. Lett. 1, 62–64 (1989).CrossRefGoogle Scholar
  116. 113.
    P. Wheatley, P. J. Bradley, M. Whitehead, G. Parry, J. E. Midwinter, P. Mistry, M. A. Pate, and J. S. Roberts, Novel nonresonant optoelectronic logic device, Electron. Lett. 23, 92 (1987).CrossRefGoogle Scholar
  117. 114.
    R. B. Bailey, R. Sahai, C. Lastufka, and K. Vural, Temperature dependent characteristics of GaAs/AlGaAs multiple quantum well optical modulators, in: Topical Meeting on Quantum Wells for Optics and Optoelectronics, 1989 Technical Digest Series, Vol. 10, pp. 210–213, Optical Society of America, Washington, D.C.Google Scholar
  118. 115.
    M. Whitehead, A. Rivers, and G. Parry, Low voltage multiple quantum well reflection modulator with on:off ratio > 100:1, Electron. Lett. 15, 984–985 (1989).CrossRefGoogle Scholar
  119. 116.
    A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, Multistate self-electro-optic effect devices, IEEE J. Quantum Electron. QE-25, 1921–1927 (1989).CrossRefGoogle Scholar
  120. 117.
    A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, Quantum well tri-state devices, Appl. Opt. 29, 1157–1160 (1990).CrossRefGoogle Scholar
  121. 118.
    A. L. Lentine, D. A. B. Miller, J. E. Henry, J. E. Cunningham, L. M. Chirovsky, and L. A. D’Asaro, Optical logic using electrically connected quantum well pin diode modulators and detectors, Appl. Opt. 29, 2153–2163 (1990).CrossRefGoogle Scholar
  122. 119.
    M. Sugimoto, Y. Tashiro, and N. Hamao, New optical bistable device with multi-quantum well structure, in: Conference on Lasers and Electro-optics, 1987 Technical Digest Series, pp. 348–350, Optical Society of America, Washington, D.C.Google Scholar
  123. 120.
    S. Hong and J. Singh, Theoretical investigation of an integrated all optical controller modulator device using QCSE in a multiquantum well phototransistor, IEEE J. Quantum Electron. QE-25, 301–311 (1989).CrossRefGoogle Scholar
  124. 121.
    D. R. P. Guy, N. Apsley, L. L. Taylor, and S. J. Bass, Theory of electro-optic modulator based on quantum wells in a semiconductor etalon, in: Quantum Well and Superlattice Physics (G. H. Dohler and J. N. Schulman, eds.), Proc. SPIE 792, pp. 189–196 (1987).CrossRefGoogle Scholar
  125. 122.
    A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, and D. A. B. Miller, Energy scaling and sub-nanosecond switching of symmetric self electro-optic effect devices, IEEE Photon. Technol. Lett. 6, 129–131 (1989).CrossRefGoogle Scholar
  126. 123.
    G. D. Boyd, A. M. Fox, U. Keller, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, J. M. Kuo, R. F. Kopf, and A. L. Lentine, 33 ps optical switching of symmetric self electro-optic effect devices (S-SEEDs) in: Conference on Lasers and Electro-optics (Postdeadline Papers), pp. 604–605 (1990).Google Scholar
  127. 124.
    L. M. F. Chirovsky, A. L. Lentine, and D. A. B. Miller, Symmetric self electro-optic effect device as an optical sense amplifier, in: Conference on Lasers and Electro-optics, 1989 Technical Digest Series, Vol. 11, Paper MJ2, Optical Society of America, Washington, D.C.Google Scholar
  128. 125.
    W. Dobbelaere, D. Huang, M. S. Unlu, and H. Morkoc, AlGaAs/GaAs multiple quantum well reflection modulators grown on Si substrates, Appl. Phys. Lett. 53, 94–96 (1988).CrossRefGoogle Scholar
  129. 126.
    K. W. Goosen, G. D. Boyd, J. E. Cunningham, W. Y. Jan, D. A. B. Miller, D. S. Chemla, and R. M. Lum, GaAs-AlGaAs multiple quantum well reflection modulators grown on GaAs and silicon substrates, IEEE Photon. Technol. Lett. 1, 304–306 (1989).CrossRefGoogle Scholar
  130. 127.
    S. Lee, S. C. Esener, M. A. Title, and T. J. Drabik, Two-dimensional silicon PLZT spatial light modulators—design considerations and technology, Opt. Eng. 25, 250–260 (1986).Google Scholar
  131. 128.
    I. Bar-Joseph, G. Sucha, D. A. B. Miller, D. S. Chemla, B. I. Miller, and U. Koren, Self electro-optic-effect device and modulation converter with InGaAs/InP multiple quantum wells, Appl. Phys. Lett. 52, 51–53 (1988).CrossRefGoogle Scholar
  132. 129.
    C. R. Giles, T. Li, T. H. Wood, C. A. Burrus, and D. A. B. Miller, An all-optical regenerator, Electron. Lett. 24, 848–850 (1988).CrossRefGoogle Scholar
  133. 130.
    C. R. Giles, T. W. Wood, T. Li, and C. A. Burrus, Quantum well SEED optical pulse generator, in: Topical Meeting on Quantum Wells for Optics and Optoelectronics, 1989 Technical Digest Series, Vol. 10, pp. 115–116, Optical Society of America, Washington, DC.Google Scholar
  134. 131.
    A. Kost, E. Garmire, A. Danner, and P. D. Dapkus, Large optical non-linearities in a GaAs/AlGaAs hetero n-i-p-i structure, Appl. Phys. Lett. 52, 637–639 (1988).CrossRefGoogle Scholar
  135. 132.
    T. Sizer II, G. Livescu, J. E. Cunningham, and D. A. B. Miller, Diffusion assisted optical switch: A new logic device, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), pp. 12–14, Optical Society of America, Washington, D.C. (1989).Google Scholar
  136. 133.
    G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, A new double heterostructure optoelectronic switching device using molecular beam epitaxy, J. Appl. Phys. 59, 596–600 (1989).CrossRefGoogle Scholar
  137. 134.
    G. W. Taylor and J. G. Simmons, The bipolar inversion channel field effect transistor (BICFET)—A new field effect solid-state device: Theory and structures, IEEE Trans. Electron Devices ED-32, 2345–2367 (1985).CrossRefGoogle Scholar
  138. 135.
    See, e.g., B. G. Streetman, Solid State Electronic Devices, Prentice-Hall, Englewood Cliffs, N.J. (1972).Google Scholar
  139. 136.
    See, e.g., G. W. Taylor, R. S. Mand, A. Y. Cho, and J. G. Simmons, Experimental realization of an n-channel double heterostructure optoelectronic switch, Appl. Phys. Lett. 48, 1368–1370 (1986).CrossRefGoogle Scholar
  140. 137.
    G. W. Taylor, R. S. Mand, J. G. Simmons, and A. Y. Cho, Ledistor: A three-terminal double heterostructure optoelectronic switch, Appl. Phys. Lett. 50, 338–340 (1987).CrossRefGoogle Scholar
  141. 138.
    D. L. Crawford, G. W. Taylor, P. Cooke, T. Y. Chang, B. Tell, and J. G. Simmons, Optoelectronic transient response of the self-aligned double heterostructure optoelectronic switch, Appl. Phys. Lett. 53, 1797–1799 (1988).CrossRefGoogle Scholar
  142. 139.
    K. Kara, K. Kojima, K. Mitsunanaga, and K. Kyuma, Differential optical comparator using parallelly connected AlGaAs pnpn optical switches, Electron. Lett. 25, 433–434 (1989).CrossRefGoogle Scholar
  143. 140.
    K. Kara, K. Kojima, K. Mitsunanaga, and K. Kyuma, Differential optical switching at subnanowatt input power, IEEE Photon. Technol. Lett. 1, 370–372 (1989).CrossRefGoogle Scholar
  144. 141.
    D. L. Crawford, G. W. Taylor, and J. G. Simmons, Optoelectronic transient response of an n-channel double heterostructure optoelectronic switch, Appl. Phys. Lett. 52, 863–865 (1988).CrossRefGoogle Scholar
  145. 142.
    G. W. Taylor, P. Cooke, P. Claisse, M. G. Young, T. Y. Chang, and B. I. Miller, A single quantum well DOES laser for optical computing, IEEE LEOS Annual Meeting, Paper OE-25, p. 19 (1989).Google Scholar
  146. 143.
    J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison and L. T. Florez, Low threshold surface emitting microlasers, Electron. Lett. 25, 1123–1124 (1989).CrossRefGoogle Scholar
  147. 144.
    J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, N. A. Olsson, J. P. Harbison, and L. T. Florez, Surface emitting microlasers for photonic switching and interchip interconnections, Opt. Eng. 29, 210–214 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations