Optically Transparent Systems

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)


This chapter covers systems that use optically transparent devices for space-division switching, time-division switching, and spectral-division switching. Some systems that we will discuss, especially those classified as using spectral-division switching, may contain both optically transparent and optical logic components, but the optical logic components are usually at the edge of the network and the information is distributed principally through optically transparent devices. Since optical logic devices are not covered until Chapter 4, some devices are introduced in a rudimentary way when their characteristics are important to the system under consideration. More rigorous device descriptions can be found in Chapters 2 and 4.


Cross Talk Directional Coupler Spatial Light Modulator Switching Element Switching Fabric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press, New York (1965).zbMATHGoogle Scholar
  2. 2.
    J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer Academic, Boston (1990).zbMATHCrossRefGoogle Scholar
  3. 3.
    H. J. Seigel, Interconnection Networks for Large-Scale Parallel Processing, Heath, Boston (1985).Google Scholar
  4. 4.
    W.-K. Chen, Theory of Nets: Flows in Networks, Wiley, New York (1990).zbMATHGoogle Scholar
  5. 5.
    T.-Y. Feng, A survey of interconnection networks, Computer Dec., 12–27 (1981).Google Scholar
  6. 6.
    J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771–780 (1981).CrossRefGoogle Scholar
  7. 7.
    L. R. Goke and G. J. Lipovski, Banyan networks for partitioning multiprocessor systems, Proceedings of the First Annual Symposium on Computer Architecture, 1973, pp. 21–28.Google Scholar
  8. 8.
    C.-L. Wu and T.-Y. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29, 694–702 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    D. Slepian, Two theorems on a particular crossbar switching network, unpublished manuscript (1952).Google Scholar
  10. 10.
    A. M. Duguid, Structural properties of switching networks, Brown Univ. Prog. Rep. BTL-7 (1959).Google Scholar
  11. 11.
    P. Hall, On representatives of subsets, J. London Math. Soc. 10, 26–30 (1935).CrossRefGoogle Scholar
  12. 12.
    L. Mirsky, Transversal Theory, Academic Press, New York (1971).zbMATHGoogle Scholar
  13. 13.
    D. C. Opferman and N. T. Tsao-Wu, On a class of rearrangeable switching networks—Part I: Control algorithms, Part II: Enumeration studies of fault diagnosis, Bell Syst. Tech. J. 50, 1579–1618 (1971).MathSciNetzbMATHGoogle Scholar
  14. 14.
    M. C. Pauli, Reswitching of connection networks, Bell Syst. Tech. J. 41, 833–855 (1962).Google Scholar
  15. 15.
    A. Varma and C. S. Raghavendra, Rearrangeability of multistage shuffle/exchange networks, IEEE Trans. Commun. COM-36, 1138–1147 (1988).zbMATHCrossRefGoogle Scholar
  16. 16.
    D. G. Smith and M. M. Rahmnekhan, Wide-sense non-blocking networks, and some packing algorithms, Proc. 1976 Int. Teletraffic Conf, pp. 542–1–542–4.Google Scholar
  17. 17.
    V. E. Benes and R. P. Kurshan, Wide-sense non-blocking network made of square switches, Electron. Lett. 17, 697 (1981).CrossRefGoogle Scholar
  18. 18.
    R. A. Spanke, Architectures for large nonblocking optical space switches, IEEE J. Quantum Electron. QE-22, 964–967 (1986).CrossRefGoogle Scholar
  19. 19.
    C. Clos, A study of non-blocking switching networks, Bell Syst. Tech. J. 32, 406–424 (1953).Google Scholar
  20. 20.
    A. Huang and S. Knauer, Starlite: A wideband digital switch, Proc. Globecom ’84. Google Scholar
  21. 21.
    Y.-S. Yeh, M. G. Hluchyj, and A. S. Acampora, The knockout switch: A simple, modular architecture for high-performance packet switching, IEEE J. Sel. Areas Commun. SAC-5, 1274 1283 (1987).CrossRefGoogle Scholar
  22. 22.
    A. R. Diaz, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuck, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 1087–1095 (1988).Google Scholar
  23. 23.
    J. D. Evankow and R. A. Thompson, Photonic switching modules designed with laser diode amplifiers, IEEE J. Sel. Areas Commun. SAC-6, 1087–1095 (1988).CrossRefGoogle Scholar
  24. 24.
    H. S. Hinton, A nonblocking optical interconnection network using directional couplers, Proceedings of 1984 IEEE GLOBECOM, 2, pp. 885–889.Google Scholar
  25. 25.
    M. Kondo, N. Takado, K. Komatsu, and Y. Ohta, 32 switch-elements integrated low-crosstalk Ti:LiNbO3 optical matrix switch, IOOC-ECOC, 1985, pp. 361–364.Google Scholar
  26. 26.
    G. A. Bogert, Ti:LiNbO3 intersecting waveguides, Electron. Lett. 23, 817–818 (1987).CrossRefGoogle Scholar
  27. 27.
    R. A. Spanke, Architectures for guided-wave optical space switching systems, IEEE Commun. 25, 42–48 (1987).CrossRefGoogle Scholar
  28. 28.
    A. Waksman, A permutation network, J. Assoc. Comput. Mach., 15, 159–163 (1968).MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    K. Padmanabhan and A. N. Netravali, Dilated networks for photonic switching, IEEE Trans. Commun. COM-35, 1357 1365 (1987).CrossRefGoogle Scholar
  30. 30.
    M. Fujiwara, H. Nishimoto, T. Kajitani, M. Itoh, and S. Suzuki, Studies on semiconductor optical amplifiers for line capacity expansion in photonic space-division switching system, IEEE J. Lightwave Technol. LT-9, 155–160 (1991).CrossRefGoogle Scholar
  31. 31.
    Introduction to digital transmission, in: Transmission Systems for Communications, 5th ed., Bell Telephone Laboratories, pp. 589 606 (1982).Google Scholar
  32. 32.
    Digital HierarchyOptical Interface Rates and Formats Specifications, ANSI T1. 105–1988.Google Scholar
  33. 33.
    K. Oshima, T. Kitayama, M. Yamaki, T. Matsui, and K. Ito, Fiber-optic local area passive network using burst TDMA scheme, IEEE-J. Lightwave Technol. LT-3, 502–510 (1985).CrossRefGoogle Scholar
  34. 34.
    J. R. Erickson, R. A. Nordin, W. A. Payne, and M. T. Ratajack, A 1.7 gigabit-per-second, time-multiplexed photonic switching experiment, IEEE Commun. 25, pp. 56 58 (1987).CrossRefGoogle Scholar
  35. 35.
    T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See T. Yasui and K. Kikuchi, Photonic switching system/network architectural possibilities, pp. 158–166.Google Scholar
  36. 36.
    R. S. Tucker, S. K. Korotky, G. Eisenstein, L. L. Buhl, J. J. Veselka, G. Raybon, B. L. Kasper, A. H. Gnauck, and R. C. Alferness, 16-Gbit/s optical time-division-multiplexed transmission system experiment, OFC ‘88 Technical Digest, Vol. 1 THB2, OSA, p. 149.Google Scholar
  37. 37.
    S. Suzuki, T. Terakado, K. Komatsu, K. Nagashima, A. Suzuki, and M. Kondo, An experiment on high-speed optical time-division switching, IEEE J. Lightwave Technol. LT-4, 894 899 (1986).CrossRefGoogle Scholar
  38. 38.
    R. A. Thompson and P. P. Giordano, An experimental photonic time-slot interchanger using optical fibers as reentrant delay-line memories, IEEE J. Lightwave Technol. LT-5, 154 162(1987).CrossRefGoogle Scholar
  39. 39.
    T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See W. A. Payne and H. S. Hinton, System considerations for the lithium niobate photonic switching technology, pp. 196 199.Google Scholar
  40. 40.
    L. G. Cohen and J. W. Fleming, Effect of temperature on transmission in lightguides, Bell Syst. Tech. J. 58, 945–951 (1979).Google Scholar
  41. 41.
    R.I. MacDonald, Switched optical delay-line signal processors, IEEE J. Lightwave Technol. LT-5, 856–861 (1987).CrossRefGoogle Scholar
  42. 42.
    T. K. Gustafson and P. W. Smith (eds.), Photonic Switching, Springer-Verlag, Berlin (1987). See R. A. Thompson, Optimizing photonic variable-integer-delay circuits, pp. 158–166.Google Scholar
  43. 43.
    P. R. Prucnal, M. A. Santoro, and T. R. Fan, Spread spectrum fiber-optic local area network using optical processing, IEEE J. Lightwave Technol. LT-4, 547–554 (1986).CrossRefGoogle Scholar
  44. 44.
    P. R. Prucnal, M. A. Santoro, and S. K. Sehgal, Ultrafast all-optical synchronous multiple access fiber networks, IEEE J. Sel. Areas Commun. SAC-4, 1484–1493 (1986).CrossRefGoogle Scholar
  45. 45.
    G. J. Foschini and G. Vannucci, Using spread-spectrum in a high-capacity fiber-optic local network, IEEE J. Lightwave Technol. LT-6, 370–379 (1988).CrossRefGoogle Scholar
  46. 46.
    A. A. M. Saleh and H. Kogelnik, Reflective single-mode fiber-optic passive star couplers, IEEE J. Lightwave Technol. LT-6, 392–398 (1988).CrossRefGoogle Scholar
  47. 47.
    T. E. Darcie, Subcarrier multiplexing for multiple-access lightwave networks, IEEE J. Lightwave Technol. LT-5, 1103–1110 (1987).CrossRefGoogle Scholar
  48. 48.
    J. Lipson, L. C. Upadhyayula, S.-Y. Huang, C. B. Roxlo, E. J. Flynn, P. M. Nitzsche, C. J. McGrath, G. L. Fenderson, and M. S. Schaefer, High-fidelity lightwave transmission of multiple AM-VSB NTSC signals, IEEE Trans. Microwave Theory Tech. MTT-38, 483–493 (1990).CrossRefGoogle Scholar
  49. 49.
    T. E. Darcie and G. E. Bodeep, Lightwave subcarrier CATV transmission systems, IEEE Trans. Microwave Theory Tech. MTT-38, 524–533 (1990).CrossRefGoogle Scholar
  50. 50.
    P. M. Hill and R. Olshansky, A 20-channel optical communication system using subcarrier multiplexing for the transmission of digital video signals, IEEE J. Lightwave Technol. LT-8, 554–560 (1990).CrossRefGoogle Scholar
  51. 51.
    R. Olshansky and V. A. Lanziera, 60-channel FM video subcarrier multiplexed optical communication system, Electron. Lett. 23, 1196–1197 (1987).CrossRefGoogle Scholar
  52. 52.
    J. E. Bowers, Optical transmission using PSK-modulated subcarriers at frequencies to 16 GHz, Electron. Lett. 22, 1119–1121 (1986).CrossRefGoogle Scholar
  53. 53.
    G. E. Bodeep and T. E. Darcie, Semiconductor lasers versus external modulators: A comparison of nonlinear distortion for lightwave subcarrier CATV applications, IEEE Photonics Technol. Lett. PTL-1, 401–403 (1989).CrossRefGoogle Scholar
  54. 54.
    P. S. Henry, R. A. Linke, and A. H. Gnauck, Introduction to lightwave systems, in: Optical Fiber Telecommunications II (S. E. Miller and I. P. Kaminow, eds.), pp. 822–825, Academic Press, New York (1988).Google Scholar
  55. 55.
    C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE J. Sel. Areas Commun. SAC-8, 948–964 (1990).CrossRefGoogle Scholar
  56. 56.
    J. T. Verdeyen, Laser Electronics, Prentice-Hall, Englewood Cliffs, N.J. (1981).Google Scholar
  57. 57.
    J. E. Bowers and M. A. Pollack, Semiconductor lasers for telecommunications, in: Optical Fiber Telecommunications II (S. E. Miller and I. P. Kaminow, eds.), pp. 509–568, Academic Press, New York (1988).Google Scholar
  58. 58.
    H. Kobrinski, M. P. Vecchi, M. S. Goodman, E. L. Goldstein, T. E. Chapuran, J. M. Cooper, M. Tur, C.-E. Zah, and S. G. Menocal, Jr., Fast wavelength-switching of laser transmitters and amplifiers, IEEE J. Sel. Areas Commun. SAC-8, 1190–1202 (1990).CrossRefGoogle Scholar
  59. 59.
    M. S. Goodman, H. Kobrinski, M. P. Vecchi, R. M. Bulley, and J. L. Gimlett, The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations, IEEE J. Sel. Areas Commun. SAC-8, 995–1004 (1990).CrossRefGoogle Scholar
  60. 60.
    TSL1000 Tunable External Cavity Semiconductor Laser, BT&D Technologies, USE-0052–03-17–89, Wilmington, Del.Google Scholar
  61. 61.
    F. Heismann, R. C. Alferness, L. L. Buhl, G. Eisenstein, S. K. Korotky, J. J. Veselka, L. W. Stulz, and C. A. Burrus, Narrow-linewidth, electro-optically tunable InGaAsP-Ti:LiNbO3 extended cavity laser, Appl. Phys. Lett. 51, 164–166 (1987).CrossRefGoogle Scholar
  62. 62.
    G. Coquin, K. W. Cheung, and M. M. Choy, Single- and multiple-wavelength operation of acousto-optically tuned lasers at 1.3 µm, IEEE J. Quantum Electron. QE-25, 1575–1579 (1989).CrossRefGoogle Scholar
  63. 63.
    M. Fujiwara, N. Shimosaka, M. Nishio, S. Suzuki, S. Yamazaki, S. Murata, and K. Kaede, A coherent photonic wavelength-division switching system for broad-band networks, IEEE J. Lightwave Technol. LT-8, 416–422 (1990).CrossRefGoogle Scholar
  64. 64.
    L. G. Kazovsky, M. Stern, S. G. Menocal, and C.-E. Zah, DBR active optical filters: Transfer function and noise characteristics, IEEE J. Lightwave Technol. LT-8, 1441–1451 (1990).CrossRefGoogle Scholar
  65. 65.
    T. Numai, 1.5 µm optical filter using a two-section Fabry Perot laser diode with wide tuning range and high constant gain, IEEE Photonics Technol. Lett. PTL-2, 401–403 (1990).CrossRefGoogle Scholar
  66. 66.
    I. P. Kaminow, P. P. Iannone, J. Stone, and L. W. Stulz, FDMA-FSK star network with a tunable optical filter demultiplexer, IEEE J. Lightwave Technol. LT-6, 1406–1414 (1988);CrossRefGoogle Scholar
  67. 66a.
    I. P. Kaminow, FSK with direct detection in optical multiple-access FDM networks, IEEE J. Sci. Areas Commun. SAC-8, 1005–1014 (1990).CrossRefGoogle Scholar
  68. 67.
    A. Frenkel and C. Lin, Angle-tuned etalon filters for optical channel selection in high density wavelength-division multiplexed systems, IEEE J. Lightwave Technol. LT-7, 615–624 (1989).CrossRefGoogle Scholar
  69. 68.
    M. W. Maeda, J. S. Patel, C. Lin, J. Horrobin, and R. Spicer, Electronically tunable liquid-crystal-etalon filter for high-density WDM systems, IEEE Photonics Technol. Lett. PTL-2, 820–822 (1990).CrossRefGoogle Scholar
  70. 69.
    F. Heisman, W. Warzanskyj, R. C. Alferness, and L. L. Buhl, Narrowband double-pass wavelength filter with broad tuning range, Integrated and Guided-Wave Optics, 1988, Technical Digest Series, Vol. 5, pp. 103–106, Optical Society of America, Washington, D.C.Google Scholar
  71. 70.
    K.-W. Cheung, Acoustooptic tunable filters in narrowband WDM networks: Systems issues and network applications, IEEE J. Sel. Areas Commun. SAC-8, 1015–1025 (1990).CrossRefGoogle Scholar
  72. 71.
    OFC1100 Tunable Optical Filter, BT&D Technologies, USE-0048–03-17–89, Wilmington, Del.Google Scholar
  73. 72.
    N. A. Olsson and W. T. Tsang, An optical switching and routing system using frequency tunable cleaved-coupled-cavity semiconductor lasers, IEEE J. Quantum Electron. QE-20, 332–334(1984).CrossRefGoogle Scholar
  74. 73.
    D. B. Payne and J. R. Stern, Transparent single mode fiber optical networks, IEEE J. Lightwave Technol. LT-4, 864–869 (1986).CrossRefGoogle Scholar
  75. 74.
    E.-J. Bachus, R.-P. Braun, C. Caspar, E. Grossman, H. Foisel, K. Hermes, H. Lamping, B. Strebel, and F. J. Westphal, Ten-channel coherent optical fiber transmission, Electron. Lett. 22, 1002–1003 (1986).CrossRefGoogle Scholar
  76. 75.
    E. Arthurs, J. M. Cooper, M. S. Goodman, H. Kobrinski, M. Tur, and M. P. Vecchi, Multiwavelength optical crossconnect for parallel-processing computers, Electron. Lett. 24, 119–120 (1986).CrossRefGoogle Scholar
  77. 76.
    B. S. Glance, K. Pollock, C. A. Burrus, B. L. Kasper, G. Eisenstein, and L. W. Stulz, WDM coherent optical star network, IEEE J. Lightwave Technol. LT-6, 67–72 (1988).CrossRefGoogle Scholar
  78. 77.
    B. S. Glance and O. Scarmucci, High-Performance Dense FDM Coherent Optical Network, IEEE J. Select. Areas Commun., Vol. 8, No. 6, Aug. 1990, pp. 1043–1047.CrossRefGoogle Scholar
  79. 78.
    C. Lin, H. Kobrinski, A. Frenkel, and C. A. Brackett, Wavelength-tunable 16 optical channel transmission experiment at 2 Gb/s and 600 Mb/s for broadband subscriber distribution, Electron. Lett. 24, 1215–1217 (1988).CrossRefGoogle Scholar
  80. 79.
    A. R. Chraplyvy and R. W. Tkach, Narrowband tunable optical filter for channel selection in densely packed WDM systems, Electron. Lett. 22, 1084–1085 (1986).CrossRefGoogle Scholar
  81. 80.
    H. Toba, K. Oda, K. Nakanishi, N. Shibata, K. Nosu, N. Takato, and M. Fukuda, A 100-channel optical FDM transmission/distribution at 622 Mb/s over 50 km, IEEE J. Lightwave Technol. LT-8, 1396–1401 (1990).CrossRefGoogle Scholar
  82. 81.
    E. Arthurs, M. S. Goodman, H. Kobrinski, and M. P. Vecchi, Hypass: An optoelectronic hybrid packet switching system, IEEE Sel. Areas Commun. SAC-6, 1500 1510 (1988).CrossRefGoogle Scholar
  83. 82.
    J. Stone and L. W. Stulz, Pigtailed high-finesse tunable fiber Fabry-Perot interferometers with large, medium, and small free spectral ranges, Electron. Lett. 23, 781 (1987).CrossRefGoogle Scholar
  84. 83.
    J. I. Capetanakis, Generalized TDMA: The multi-access tree protocol, IEEE Trans. Commun. COM-27, 1476–1484 (1979).CrossRefGoogle Scholar
  85. 84.
    A. S. Acampora, M. J. Karol, and M. G. Hluchyj, Terabit lightwave networks: The multihop approach, AT&T Tech. J. 66(6), 21–34 (1987).Google Scholar
  86. 85.
    S. Suzuki, M. Nishio, T. Numai, M. Fujiwara, M. Itoh, S. Murata, and N. Shimosaka, A photonic wavelength-division switching system using tunable laser diode filters, IEEE J. Lightwave Technol. LT-8, 660–666 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations