Optically Transparent Devices

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)


The purpose of this chapter is to introduce the photonic switching systems designers to some of the optically transparent or relational devices that can be used as building blocks in constructing larger photonic switching systems. By understanding the basic properties and attributes of these devices, the systems designer can determine the limitations that will constrain the systems he or she designs. Finally, it should be understood that the material in this chapter has been selected to teach the basic properties and attributes of several optically transparent devices from a systems perspective rather than from a device physics viewpoint. The design of these devices is beyond the scope of this book.


Directional Coupler Semiconductor Optical Amplifier Spatial Light Modulator Optical Amplifier Gain Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Yariv, Introduction to Optical Electronics, 2nd ed., Holt, Rinehart & Winston, New York (1971).Google Scholar
  2. 2.
    L. Levi, Applied Optics: A Guide to Optical System Design, Vol. 2, Appendix 14.1.6, Wiley, New York (1980).Google Scholar
  3. 3.
    A. E. Joel, Jr., On permutation switching networks, Bell Syst. Tech. J. May-June, 813–822 (1968).Google Scholar
  4. 4.
    R. G. Hunsperger, Integrated Optics: Theory and Technology, Springer-Verlag, Berlin (1984).Google Scholar
  5. 5.
    R. V. Schmidt and R. C. Alferness, Directional coupler switches, modulators and filters using alternating Δβ techniques, IEEE Trans. Circuits Syst. CAS-26, 1099–1108 (1979).CrossRefGoogle Scholar
  6. 6.
    R. C. Alferness, R. V. Schmidt, and E. H. Turner, Characteristics of Ti-diffused lithium niobate optical directional couplers, Appl. Opt. 18, 4012–4016 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Rieber, A. M. Roy, B. Sejourne, and M. Werner, Electrically switched optical directional coupler: Cobra, Appl. Phys. Lett. 17, 289–291 (1975).CrossRefGoogle Scholar
  8. 8.
    S. E. Miller, Coupled-wave theory and waveguide applications, Bell Syst. Tech. J. 33, 661–719 (1954).Google Scholar
  9. 9.
    H. Kogelnik and R. V. Schmidt, Switched directional couplers with alternating Δβ, IEEE J. Quantum Electron. QE-12, 396–401 (1976).CrossRefGoogle Scholar
  10. 10.
    R. V. Schmidt and H. Kogelnik, Electro-optically switched coupler with stepped Δ β reversal using Ti-diffused LiNbO3 waveguides, Appl. Phys. Lett. 28, 503–506 (1976).CrossRefGoogle Scholar
  11. 11.
    S. Thaniyavarn, Cross-talk characteristics of Δβ phase reversal directional coupler switches, in: Integrated Optical Circuit Engineering II (S. Sriram, ed.), Proc. SPIE 578, 1985, pp. 192–198.CrossRefGoogle Scholar
  12. 12.
    J. E. Watson, polarization-independent 1 x 16 optical switch using Ti:LiNbP3 waveguides, Conference on Optical Tiber Communication, San Diego, Feb. 11–13, 1985, p. 110.Google Scholar
  13. 13.
    R. C. Alferness and P. S. Cross, Filter characteristics of codirectionally coupled waveguides with weighted coupling, IEEE J. Quantum Electron. QE-14, 843–847 (1978).CrossRefGoogle Scholar
  14. 14.
    R. C. Alferness, Optical directional couplers with weighted coupling, Appl. Phys. Lett. 35, 260–262 (1979).CrossRefGoogle Scholar
  15. 15.
    W. J. Minford, S. K. Korotky, and R. C. Alferness, Low-loss Ti:LiNbO3 waveguide bends at λ = 1.3 µm, IEEE Trans. Microwave Theory Tech. MTT-30, 1790–1794 (1982).CrossRefGoogle Scholar
  16. 16.
    S. K. Korotky, E. A. J. Marcatilli, J. J. Veselka, and R. H. Bosworth, Greatly reduced losses for small-radius bends in Ti :LiNbO3 waveguides, Proceedings of the European Conference on Integrated Optics, Berlin, 1985.Google Scholar
  17. 17.
    L. McCaughan, Low-loss polarization-independent electrooptical switches at λ = 1.3 µm, J. Lightwave Technol. LT-2, 51–55 (1984).CrossRefGoogle Scholar
  18. 18.
    I. P. Kaminow, An Introduction to Electrooptic Devices, Academic Press, New York (1974).Google Scholar
  19. 19.
    A. Yariv, Introduction to Optical Electronics, Holt, Rinehart & Winston, New York (1976).Google Scholar
  20. 20.
    R. C. Alferness, Waveguide electrooptic modulators, IEEE Trans. Microwave Theory Tech. MTT-30, 1121 1137 (1982).CrossRefGoogle Scholar
  21. 21.
    R. C. Alferness, Polarization-independent optical directional coupler switch using weighted coupling, Appl. Phys. Lett. 35, 748–750 (1979).CrossRefGoogle Scholar
  22. 22.
    L. McCaughan and G. A. Bogert, 4 × 4 strictly nonblocking integrated Ti:LiNbO3 switch array, Conference on Optical Tiber Communications, San Diego, Feb. 11–13, 1985, pp. 76–77.Google Scholar
  23. 23.
    I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. QE-17, 15 22 (1981).CrossRefGoogle Scholar
  24. 24.
    R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18, 2241–2251 (1979).CrossRefGoogle Scholar
  25. 25.
    J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, A single-polarization fiber, J. Lightwave Technol. LT-1, 370 373 (1983).CrossRefGoogle Scholar
  26. 26.
    S. C. Rashleigh and R. H. Stolen, Preservation of polarization in single-mode fibers, Fiber-opt. Technol. May, 155–161 (1983).Google Scholar
  27. 27.
    M. Izutsu, Y. Yamane, and M. Tadasi, Broad-band traveling-wave modulator using a LiNbO3 optical waveguide, IEEE J. Quantum Electron. QE-13, 287 290 (1977).CrossRefGoogle Scholar
  28. 28.
    K. Kubota, J. Noda, and O. Mikami, Traveling wave optical modulator using a directional coupler LiNbO3 waveguide, IEEE J. Quantum Electron. QE-16, 754–760 (1980).CrossRefGoogle Scholar
  29. 29.
    R. C. Alferness, Guided-wave devices for optical communications, IEEE J. Quantum Electron. QE-17, 946–959 (1981f).CrossRefGoogle Scholar
  30. 30.
    S. K. Korotky, R. C. Alferness, C. H. Joyner, and L. L. , 14 Gbit/sec optical signal encoding for X — 1.32 µm with double pulse drive of a Ti:LiNbO3 waveguide modulator, Electron. Lett. 20, 132–133 (1984).CrossRefGoogle Scholar
  31. 31.
    S. Yamada and M. Minakata, DC drift phenomena in LiNbO3 optical waveguide devices, Jpn. J. Appl. Phys. 20, 733 (1981).CrossRefGoogle Scholar
  32. 32.
    O. G. Ramer, C. Mohr, and J. Pikulski, Polarization-independent optical switch with multiple sections of reversal and a Gaussian taper function, IEEE J. Quantum Electron. QE-18, 1772–1779 (1982).CrossRefGoogle Scholar
  33. 33.
    J. R. Erickson and H. S. Hinton, Implementing a Ti:LiNbO3 4 × 4 nonblocking interconnection network, in: Integrated Optical Circuit Engineering II (S. Sriram, ed.), Proc. SPIE 578, 1985, pp. 192–198.Google Scholar
  34. 34.
    F. T. Stone, J. E. Watson, D. T. Moser, and W. J. Minford, Performance and yield of pilot-line quantities of lithium niobate switches, SPIE OE/Fibers’89, Boston (1989).Google Scholar
  35. 35.
    J. E. Watson, M. A. Mibrodt, K. Bahadori, M. F. Dautartas, C. T. Kemmerer, D. T. Moser, A. W. Schelling, T. O. Murphy, J. J. Veselka, and D. A. Herr, A low-voltage 8 × 8 Ti: LiNbO3 switch with a dilated-Benes architecture, IEEE J. Lightwave Technol. 8, 794–801 (1990).CrossRefGoogle Scholar
  36. 36.
    V. Ramaswamy, M. D. Divino, and R. D. Standley, Balanced bridge modulator switch using Ti-difTused LiNbO3 strip waveguides, Appl. Phys. Lett. 32, 644–646 (1978).CrossRefGoogle Scholar
  37. 37.
    R. G. Hunsperger, Integrated Optics: Theory and Technology, Chapter 7, Springer-Verlag, Berlin (1984).Google Scholar
  38. 38.
    A. Neyer, Electro-optic X-switch using single-mode Ti:LiNbO3 channel waveguides, Electron. Lett. 19, 553–554 (1983).CrossRefGoogle Scholar
  39. 39.
    A. Neyer, W. Mevenkamp, and B. Kretschmann, Optimization of X-switches for integrated optical switching networks, Technical Digest of the Fifth International Conference on Integrated Optics and Optical Fiber Communications/11th European Conference on Optical Communications, Venetia, Italy, 1985, Vol. 1, pp. 369 372.Google Scholar
  40. 40.
    A. Neyer, W. Mevenkamp, and B. Kretschmann, Nonblocking 4 × 4 switch array with sixteen X-switches in Ti:LiNbO3, Technical Digest of the Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, 1986, Paper WAA2.Google Scholar
  41. 41.
    E. Voges and A. Neyer, Integrated-optic devices on LiNbO3 for optical communications, J. Lightwave Technol. LT-5, 1229–1238 (1987).CrossRefGoogle Scholar
  42. 42.
    J. Ctyroky, Voltage length product of X and Z-cut Ti:LiNbO3 directional coupler and BOA switches: A comparison, J. Opt. Commun. 7, 139 143 (1986).Google Scholar
  43. 43.
    Y. Silberberg, P. Perlmutter, and J. E. Baran, Digital optical switch, Appl. Phys. Lett. 51, 1230 1232(1987).CrossRefGoogle Scholar
  44. 44.
    M. J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems, J. Lightwave Technol. 6, 531–544 (1988).CrossRefGoogle Scholar
  45. 45.
    L. D. Westbrook, Measurements of dg/dN and dn/dN and their dependence on photon energy in 1.5 µm InGaAsP laser diodes, Proc. IEE 133, 135–141.Google Scholar
  46. 46.
    M. J. Adams, H. J. Westlake, M. J. O’Mahony, and I. D. Henning, A comparison of active and passive bistability in semiconductors, IEEE J. Quantum Electron. QE-21, (1985).Google Scholar
  47. 47.
    H. J. Westlake and M. J. O’Mahony, Gain characteristics of a 1.5 µm DCPBH InGaAsP resonant optical amplifier, Electron. Lett. 21, 33–34 (1985).CrossRefGoogle Scholar
  48. 48.
    J. C. Simon, Semiconductor laser amplifier for single-mode optical fiber communications, J. Opt. Comm. 4, 51–62 (1983).Google Scholar
  49. 49.
    G. Eisenstein and R. M. Jopson, Measurements of the gain spectrum of near-traveling-wave and Fabry Perot semiconductor optical amplifiers at 1.5 µm, Int. J. Electron. 60, 113–121 (1986).CrossRefGoogle Scholar
  50. 50.
    I. W. Marshall, Low loss coupling between semiconductor lasers and single mode fiber using tapered lensed fibers, Br. Telecommun. Tech. J. 4, (1986).Google Scholar
  51. 51.
    M. J. O’Mahony, I. W. Marshall, H. J. Westlake, and W. G. Stallard, Wide-band optical receiver using traveling wave laser amplifier, Electron. Lett. (1986).Google Scholar
  52. 52.
    I. D. Henning, M. J. Adams, and J. V. Collins, Performance predictions from a new optical amplifier model, IEEE J. Quantum Electron. QE-21, 609–613 (1985).CrossRefGoogle Scholar
  53. 53.
    T. Mukai, Y. Yamamoto, and T. Kimura, S/N and error rate performance in AlGaSa semiconductor laser preamplifier and linear repeater systems, IEEE J. Quantum Electron. QE-18, 1560–1568 (1982).CrossRefGoogle Scholar
  54. 54.
    D. M. Fye, Practical limitations on optical amplifier performance, IEEE J. Lightwave Technol. LT-2, 403–406 (1984).CrossRefGoogle Scholar
  55. 55.
    A. Himeno and M. Kobayashi, 4 × 4 optical-gate matrix switch, J. Lightwave Technol. LT-3, 230 235 (1985).CrossRefGoogle Scholar
  56. 56.
    A. A. Sawchuk and T. C. Strand, Digital optical computing, Proc. IEEE, July 1984, pp. 758–779.Google Scholar
  57. 57.
    G. D. Boyd, Quantum-well Fabry Perot electro-absorption and refraction modulators and bistability, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 222–226, Optical Society of America, Washington, D.C. (1991).Google Scholar
  58. 58.
    W. E. Ross, D. Psaltis, and R. H. Anderson, 2-D magneto optic spatial light modulator for signal processing, SPIE Conference, Crystal City-Arlington, Va., May 3–7, 1982.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations