Skip to main content

Abstract

As our information-hungry society moves toward ubiquitous broadband services there will be the need for telecommunications switching systems able to switch and control large numbers of users sending and receiving this high-bit-rate information. Aggregate capacities of these future systems could exceed 1 Tb/s by the turn of the century. Some of the new services that will require these large capacities include the transport and switching of NTSC video, enhanced-quality television (EQTV), high-definition television (HDTV), switched video, high-data-rate file transfers and information retrieval, animated graphics, in addition to the need for an interconnect for diskless workstations and local area networks/metropolitan area networks (LAN/MAN). These new services are the future of telecommunications companies and thus the driving force to bring photonics into switching systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bellamy, Digital Telephony, Wiley, New York (1982).

    Google Scholar 

  2. J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer Academic, Boston (1990).

    Book  MATH  Google Scholar 

  3. J. E. Berthold, Broadband electronic switching, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 66–73, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  4. H. S. Hinton, Photonic switching technology applications, AT&T Tech. J. 66, 41 53 (1987).

    Google Scholar 

  5. B. S. Glance, K. Pollack, C. A. Burrus, B. L. Kasper, G. Eisenstein, and L. W. Shultz, WDM coherent optical star network, IEEE. J. Lightwave Technol. LT-6, 67–72 (1988).

    Article  Google Scholar 

  6. T. E. Darcie, Subcarrier multiplexing for multiple-access lightwave networks, IEEE J. Lightwave Technol. LT-5, 1103–1110 (1987).

    Article  Google Scholar 

  7. P. W. Smith, On the physical limits of digital optical switching and logic elements, Bell Syst. Tech. J. 61, 1975–1993 (1982).

    Google Scholar 

  8. C. M. Bowden, M. Ciftan, and H. R. Robl, Optical Bistability, Plenum Press, New York (1981). See S. L. McCall and H. M. Gibbs, Conditions and limitations in intrinsic optical bistability, pp. 1–7.

    Book  Google Scholar 

  9. D. B. Tuckerman and R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. EDL-2, 126–129 (1981).

    Article  Google Scholar 

  10. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, and D. A. B. Miller, Energy scaling and subnanosecond switching of symmetric self-electrooptic effect devices, IEEE Photon. Technol. Lett. 1, 129–131 (1989).

    Article  Google Scholar 

  11. D. A. B. Miller, Optics for low-energy communication inside digital processors: Quantum detectors, sources, and modulators as efficient impedance converters, Opt. Lett. 14, 146–148 (1989).

    Article  Google Scholar 

  12. M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based on power and speed considerations, Appl. Opt. 27, 1742–1751 (1988).

    Article  Google Scholar 

  13. H. H. Arsenault, T. Szoplik, and B. Macukow, Optical Processing and Computing, pp. 1–31, Academic Press, New York (1989).

    Google Scholar 

  14. R. A. Nordin, A. E. J. Levi, R. N. Nottenburg, J. O’Gorman T. Tanbun-Ek, and R. A. Logan, A systems perspective on digital interconnection technology, IEEE J. Lightwave Technol. LT-10, 811–827 (1992).

    Article  Google Scholar 

  15. See B. J. Landman and R. L. Russo, Pin vs. block relationships for partitions of logic graphs, IEEE Trans. Comput. C-20, 1469–1479 (1971).

    Article  Google Scholar 

  16. R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook, Van Nos-trand Reinhold, Princeton, N.J. (1989).

    Google Scholar 

  17. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).

    Google Scholar 

  18. H. S. Hinton, Photonic switching using directional couplers, IEEE Commun. Mag. 25, 16–26 (1985).

    Article  Google Scholar 

  19. R. V. Schmidt and R. C. Alferness, Directional coupler switches, modulators, and filters using alternating Δβ techniques, IEEE Trans. Circuits Syst. CAS-26, 1099–1108 (1979).

    Article  Google Scholar 

  20. R. A. Spanke, Architectures for guided-wave optical space switching networks, IEEE Commun. Mag. 25, 42–48 (1987).

    Article  Google Scholar 

  21. P. Granestand, B. Stoltz, L. Thylen, K. Bergual, W. Döldissen, H. Heinrich, and D. Hoffmann, Strictly nonblocking 8 × 8 integrated optical switch matrix, Electron. Lett. 22, (1986).

    Google Scholar 

  22. G. A. Bogert, A low crosstalk 4 × 4 Ti:LiNbO3 optical switch with permanently attached polarization-maintaining fiber arrays, Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, February (1986).

    Google Scholar 

  23. H. S. Hinton, A non-blocking optical interconnection network using directional couplers, Proceedings of the IEEE Global Telecommunications Conference, Vol. 2, pp. 885–889 (1984).

    Google Scholar 

  24. R. A. Spanke, Architectures for large nonblocking optical space switches, IEEE J. Quantum Electron. QE-22, 964–967 (1986).

    Article  Google Scholar 

  25. T.-Y. Feng, A survey of interconnection networks, IEEE Comput. Dec. 12–27 (1981).

    Google Scholar 

  26. G. W. Richards and F. K. Hwang, A two-stage rearrangeable broadcast switching network, IEEE Trans. Commun. COM-33, 1025–1035 (1985).

    Article  Google Scholar 

  27. M. J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems, IEEE J. Lightwave Technol. LT-6, 531–544 (1988).

    Article  Google Scholar 

  28. M. Gustavsson and L. Thylen, Switch matrix with semiconductor laser amplifier gate switches: A performance analysis, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 77–79, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  29. A. D. Fisher, A review of spatial light modulators, Topical Meeting on Optical Computing, Incline Village, Nev., March 18–20, 1985.

    Google Scholar 

  30. W. E. Ross, D. Psaltis, and R. H. Anderson, 2-D magneto optic spatial light modulator for signal processing, SPIE Conference, Crystal City-Arlington, Va., May 3–7, 1982.

    Google Scholar 

  31. A. R. Tanguay, Materials requirements for optical processing and computer devices, Opt. Eng. 24, 2–18 (1985).

    Google Scholar 

  32. A. Himeno and M. Kobayashi, 4 × 4 optical-gate matrix switch, IEEE J. Lightwave Technol. LT-3, 230–235 (1985).

    Article  Google Scholar 

  33. D. R. Pape and L. J. Hornbeck, Characteristics of the deformable mirror device for optical information processing, Opt. Eng. 22, 675–681 (1983).

    Article  Google Scholar 

  34. G. Livescu, D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, Spatial light modulator and optical dynamic memory using integrated self electro-optic effect devices, Proceedings of the Conference on Lasers and Electro-Optics (Postdeadline Paper), April 26–May 1, 1987, pp. 283–284.

    Google Scholar 

  35. A. R. Dias, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuk, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 955–960 (1988).

    Article  Google Scholar 

  36. K. Oshima, T. Kitayama, M. Yamaki, T. Matsui, and K. Ito, Fiber-optic local area passive network using burst TDMA scheme, IEEE J. Lightwave Technol. LT-3, 502–510 (1985).

    Article  Google Scholar 

  37. R. A. Thompson, R. V. Anderson, J. V. Camlet, and P. P. Giordano, Experimental modular switching system with a time-multiplexed photonic center stage, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 212–218, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  38. H. Goto, K. Nagashima, and S. Suzuki, Photonic time-division switching technology, in: Photonic Switching: Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.), pp. 151–157, Springer-Verlag, Berlin (1987).

    Google Scholar 

  39. S. V. Ramanan and H. F. Jordon, Serial array shuffle-exchange architecture for universal permutation of time-slots, Digital Optical Computing II, SPIE 1215, 330 342 (1990).

    Google Scholar 

  40. J. P. Ofman, A universal automation, Trans. Moscow Math. Soc. 14 (1965) [translation published by Am. Math. Soc, Providence, R.I. (1967), pp. 200 215].

    MathSciNet  MATH  Google Scholar 

  41. M. Skov, Implementation of physical and media access protocols for high speed networks, IEEE Commun. Mag. June, 45 53 (1989).

    Google Scholar 

  42. A. A. M. Saleh and H. Kogelnik, Reflective single-mode fiber-optic passive star couplers, IEEE J. Lightwave Technol. LT-6, 392 398 (1988).

    Article  Google Scholar 

  43. P. R. Prucnal and P. A. Perrier, A new direction in photonic switching: A collapsed-network space-division switching architecture, in: OSA Proceedings on Photonic Switching, (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 212–218, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  44. M. Fijiwara, N. Shimosaka, M. Nishio, S. Suzuki, S. Yamazaki, S. Murata, and K. Kaede, A coherent photonic wavelength-division switching system for broadband networks, Proceedings of the 14th European Conference on Optical Communication (ECOC ’88), Brighton, U.K., pp. 139–142.

    Google Scholar 

  45. H. Kobrinski, R. M. Bulley, M. S. Goodman, M. P. Vecchi, C. A. Brackett, L. Curtis, and J. L. Gimlett, Demonstration of high capacity in the LAMBDANET architecture: A multiwavelength optical network, Electron. Lett. 23, 824–826 (1987).

    Article  Google Scholar 

  46. I. P. Kaminow, P. P. Iannone, J. Stone, and L. W. Stulz, FDM-FSK star network with a tunable optical filter demultiplexor, Electron. Lett. 23, 1102–1103 (1987).

    Article  Google Scholar 

  47. B. Glance, J. Stone, K. J. Pollack, P. J. Fitzgerald, C. A. Burrus, Jr., B. L. Kasper, and L. W. Stulz, Densely spaced FDM coherent star network with optical signals confined to equally spaced frequencies, IEEE J. Lightwave Technology, LT-6, 1770–1781 (1988).

    Article  Google Scholar 

  48. M. S. Goodman, E. Arthurs, J. M. Cooper, H. Kobrinski, and M. P. Vecchi, Demonstration of fast wavelength tuning for a high performance packet switch, Proceedings of the 14th European Conference on Optical Communication (ECOC 188), Brighton, U.K., pp. 255–258.

    Google Scholar 

  49. H. S. Hinton, Architectural considerations for photonic switching networks, IEEE J. Sel. Areas Commun. SAC-6, 1209–1226 (1988).

    Article  Google Scholar 

  50. T. J. Cloonan and F. B. McCormick, Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).

    Article  Google Scholar 

  51. K. Padmanabhan and A. N. Netravali, Dilated networks for photonic switching, IEEE Trans. Commun. COM-35, 1357–1365 (1987).

    Article  Google Scholar 

  52. G. W. Richards, U.S. Patents 4,993,016 and 4,991,168.

    Google Scholar 

  53. G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, A new double heterostructure optoelectronic device using molecular beam epitaxy, J. Appl. Phys. 59, 596–600 (1986).

    Article  Google Scholar 

  54. J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Use of a single nonlinear Fabry Perot etalon as optical logic gates, Appl. Phys. Lett. 44, 172–174 (1984).

    Article  Google Scholar 

  55. S. D. Smith, Optical bistability, photonic logic, and optical computation, Appl. Opt. 25, 1550 1564(1986).

    Article  Google Scholar 

  56. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, Symmetric self-electro-optic effect device: Optical set-reset latch, differential logic gate, and differential modulator/detector, IEEE J. Quantum Electron. QE-25, 1928 1936 (1989).

    Article  Google Scholar 

  57. K. Kasahara, Y. Tashiro, M. Sugimoto, N. Hamao, and T. Yanase, Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption, Appl. Phys. Lett. 52, 679–681 (1988).

    Article  Google Scholar 

  58. D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Chunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, Field-effect transistor self-electrooptic effect device: Integrated photodiode, quantum well modulator and transistor, IEEE Photon. Technol. Lett. 1, pp. 62–64 (1989).

    Article  Google Scholar 

  59. T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Technol Lett. 2, 438–440 (1990).

    Article  Google Scholar 

  60. T. J. Cloonan, G. W. Richards, F. B. McCormick, and A. L. Lentine, Extended generalized shuffle network architectures for free-space photonic switching, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 43–47, Optical Society of America, D.C. (1991).

    Google Scholar 

  61. D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, Digital fiber-optic delay line memory, Digital Optical Computing II, SPIE 1215, 366–375 (1990).

    Article  Google Scholar 

  62. N. Shibata, Y. Katsuyama, Y. Mitsunaga, M. Tateda, and S. Seikai, Thermal characteristics of optical pulse transit time delay and fiber strain in a single-mode optical fiber cable, Appl. Opt. 22, 979–984 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L. (1993). Introduction. In: An Introduction to Photonic Switching Fabrics. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9171-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9171-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9173-0

  • Online ISBN: 978-1-4757-9171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics