Skip to main content

Part of the book series: Applications of Communications Theory ((ACTH))

  • 85 Accesses

Abstract

The principles and techniques of broadband networks as presented thus far are based in large measure on a single enabling technology: VLSI. With VLSI, we can cost-effectively implement equipment capable of very sophisticated functionality. We can process the routing and protocol headers of information packets in real time, resolve contention for access rights to LANs and MANs, develop self-routing massively parallel space division packet switches, cast all types of telecommunication traffic into a standard, fixed-length cell format, and provide integrated bandwidth-on-demand to many users geographically dispersed over a very wide geography. Except for its use as the medium for high-speed point-to-point transmission links between pairs of electronic multiplexers, switches, or access modules, the technology of fiber optics is not fundamental to realization of the broadband vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Li and R. A Linke, Multigigabit-per-second lightwave systems research for long-haul applications, IEEE Commun. Mag. 26(4), April 1988.

    Google Scholar 

  2. P. S. Henry, Lightwave primer, IEEE J. Quantum Electron. QE-21(12), Dec. 1985.

    Google Scholar 

  3. J. C. Palais, Fiber Optic Communications, 3rd ed., Prentice-Hall, Englewood Cliffs, N.J., 1992.

    Google Scholar 

  4. P. K. Cheo, Fiber Optics Devices and Systems, Prentice-Hall, Englewood Cliffs, N.J., 1992.

    Google Scholar 

  5. B. E. A. Saleh and M. Teich, Fundamentals of Photonics, Wiley, New York, 1991.

    Book  Google Scholar 

  6. R. A. Linke, Optical heterodyne communication systems, IEEE Commun. Mag. 27(10), Oct. 1989.

    Google Scholar 

  7. H. Kobrinski and K.-W. Cheung, Wavelength tunable optical filters: Applications and technologies, IEEE Commun. Mag. 27(10), Oct. 1989.

    Google Scholar 

  8. T. P. Lee and C.-E. Zah, Wavelength tunable and single frequency semiconductor lasers for photonic communications networks, IEEE Commun. Mag. 27(10), Oct. 1989.

    Google Scholar 

  9. A. S. Acampora and M. J. Karol, An overview of lightwave packet networks, IEEE Net. Mag. 3(1), Jan. 1989.

    Google Scholar 

  10. A. S. Acampora, A multichannel multihop local lightwave network, 1987 IEEE GLOBECOM Conf. Rec, Tokyo.

    Google Scholar 

  11. A. S. Acampora, M. J. Karol, and M. G. Hluchyj, Terabit lightwave networks: The multihop approach, AT&T Tech. J. Nov./Dec. 1987.

    Google Scholar 

  12. M. G. Hluchyj and M. J. Karol, Shufflenet: An application of generalized perfect shuffles to multihop lightwave networks, 1988 IEEE INFOCOM Conf. Rec, New Orleans.

    Google Scholar 

  13. C. A. Brackett, Dense wavelength division multiplexing networks: Principles and applications, IEEE J. Selected Areas Commun. 8(6), Aug. 1990.

    Google Scholar 

  14. P. S. Henry, High capacity lightwave local area networks, IEEE Commun. Mag. 27(10), Oct. 1989.

    Google Scholar 

  15. P. E. Green, Fiber Optic Communication Networks, Prentice-Hall, Englewood Cliffs, N.J., 1992.

    Google Scholar 

  16. P. E. Green, An all-optical computer network: Lessons learned, IEEE Net. Mag. 6(2), March 1992.

    Google Scholar 

  17. B. Mukherjee, WDM-based local lightwave networks, Part 1: Single-hop systems, IEEE Net. Mag. 6(3), May 1992.

    Google Scholar 

  18. B. Mukherjee, WDM-based local lightwave networks, Part 2: Multihop systems, IEEE Net. Mag. 6(4), July 1992.

    Google Scholar 

  19. P. E. Green, The future of fiber-optic computer networks, IEEE Comput. Mag. 24(9), Sept. 1991.

    Google Scholar 

  20. M. S. Goodman et al., The LAMBDANET multiwavelength network: Architecture, applications, and demonstrations, IEEE J. Selected Areas Commun. SAC-8(6), Aug. 1990.

    Google Scholar 

  21. P. R. Prucnal, M. A. Santoro, and T. R. Fan, Spread-spectrum fiber optic local area networks using optical processing, IEEE J. Lightwave Technol LT-4, May 1986.

    Google Scholar 

  22. P. R. Prucnal, M. A. Santoro, and S. K. Sehgal, Ultrafast all-optical synchronous multiple access fiber networks, IEEE J. Selected Areas Commun. SAC-4, Dec. 1986.

    Google Scholar 

  23. A. Albanese, Star network with collision avoidance circuits, Bell Syst. Tech. J. 62, March 1983.

    Google Scholar 

  24. M.-S. Chen, N. R. Dono, and R. Ramaswami, A media-access protocol for packet-switched wavelength division multi-access metropolitan area networks, IEEE J. Selected Areas Commun. SAC-8(6), Aug. 1990.

    Google Scholar 

  25. A. Ganz and Z. Koren, WDM passive star protocols and performance analysis, 1991 IEEE INFOCOM Proa, Bal Harbor.

    Google Scholar 

  26. E. Arthurs, M. S. Goodman, H. Kobrinski, and M. P. Vecchi, HYP ASS: An optoelectronic hybrid packet-switching system, IEEE J. Selected Areas Commun. SAC-6, Dec. 1988.

    Google Scholar 

  27. R. Chipalkatti, Z. Zhang, and A. S. Acampora, Protocols for optical star-coupled network using WDM: Performance and complexity study, IEEE J. Selected Areas Commun. SAC-11(4), May 1993.

    Google Scholar 

  28. T. E. Stern, Linear lightwave networks: How far can they go? 1990 IEEE GLOBECOM Conf. Rec, San Diego.

    Google Scholar 

  29. A. Bannister, L. Fratta, and M. Gerla, Topological design of the wavelength division optical network, 1990 IEEE INFOCOM Proc.

    Google Scholar 

  30. A. Bannister and M. Gerla, Design of the wavelength-division optical network, 1990 IEEE Int. Commun. Conf., Conf. Rec.

    Google Scholar 

  31. R. Gidron and A. Temple, TeraNet: A multihop multichannel ATM lightwave network, 1991 IEEE Int. Commun. Conf., Conf. Rec.

    Google Scholar 

  32. J.-F. Labourdette and A. S. Acampora, Logically rearrangeable multihop lightwave networks, IEEE Trans. Commun. COM-39(8), Aug. 1991.

    Google Scholar 

  33. K. Sivarajan and R. Ramaswami, Multihop lightwave networks based on de Bruijn graphs, 1991 IEEE INFOCOM Proc, Bal Harbor.

    Google Scholar 

  34. R. C. Alferness, Waveguide electro-optic switch arrays, IEEE J. Selected Areas Commun. SAC-6(7), Aug. 1988.

    Google Scholar 

  35. A. Papoalis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, 1965.

    Google Scholar 

  36. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York, 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Acampora, A.S. (1994). Lightwave Networks. In: An Introduction to Broadband Networks. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9165-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9165-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9167-9

  • Online ISBN: 978-1-4757-9165-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics