Advertisement

Packet Switch Interconnection Fabrics

  • Anthony S. Acampora
Part of the Applications of Communications Theory book series (ACTH)

Abstract

The appeal of broadband networks which carry all types of information in some common fixed-length packet format stems in large measure from the feasibility of implementing hardware-based, real-time packet switching fabrics. Such switches route arriving packets on the basis of information contained in each packet header. Because of the high data rates involved, the reading of (and decision-making reaction to) the arriving packets must be implemented entirely in hardware; software processing is incapable of keeping pace with the high rate of packet arrivals. In general, such a hardware-based self-routing switch contains some plurality N of input and output ports and must therefore be capable of processing N packets in parallel. To maintain a physically compact design, custom-designed VLSI circuitry is essential.

Keywords

Time Slot Packet Loss Output Port Output Buffer Packet Switch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ahmadi and W. E. Dinzel, A survey of modern high performance switching techniques, IEEE J. Selected Areas Commun. SAC-7(7), Sept. 1989.Google Scholar
  2. 2.
    F. Tobagi, Fast packet switch architectures for broadband ISDN, Proc. IEEE 78(1), Jan. 1990.Google Scholar
  3. 3.
    J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer Academic, 1990.zbMATHCrossRefGoogle Scholar
  4. 4.
    IEEE J. Selected Areas Commun., issue on Broadband Packet Communications, SAC-6(9), Dec. 1988.Google Scholar
  5. 5.
    IEEE J. Selected Areas Commun., issue on Switching Systems for Broadband Networks, SAC-5(8), Oct. 1987.Google Scholar
  6. 6.
    D. M. Dias and M. Kumar, Packet switching in N log N multistage networks, GLOBECOM ′84 Conf. Rec, Nov. 1984.Google Scholar
  7. 7.
    Y. S. Yeh, M. G. Hluchyj, and A. S. Acampora, The knockout switch: A simple modular architecture for high performance packet switching, IEEE J. Selected Areas Commun. SAC-5(8), Oct. 1987.Google Scholar
  8. 8.
    J. S. Turner, Design of an integrated service packet network, IEEE J. Selected Areas Commun. SAC-4, Nov. 1986.Google Scholar
  9. 9.
    A. Huang and S. Knauer, Starlite: A wideband digital switch, GLOBECOM ′84 Conf. Rec. Nov. 1984.Google Scholar
  10. 10.
    M. G. Hluchyj and M. J. Karol, Queueing in high performance packet switching, IEEE J. Selected Areas Commun. SAC-6(9), Dec. 1988.Google Scholar
  11. 11.
    M. J. Karol, M. G. Hluchyj, and S. Morgan, Input vs. output queueing on a space division packet switch, IEEE Trans. Commun. COM-35(12), Dec. 1987.Google Scholar
  12. 12.
    K. Y. Eng, M. G. Hluchyj, and Y. S. Yeh, A knockout switch for variable length packets, IEEE J. Selected Areas Commun. SAC-5(9), Dec. 1987.Google Scholar
  13. 13.
    V. E. Benes, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic Press, New York, 1965.zbMATHGoogle Scholar
  14. 14.
    C. Clos, A study of non-blocking switching networks, Bell Syst. Tech. J. 32(3), March 1953.Google Scholar
  15. 15.
    D. Cantor, On non-blocking switching networks, Networks 1, Dec. 1971.Google Scholar
  16. 16.
    D. C. Opfermen and N. T. Tsao-Wu, On a class of rearrangeable switching networks, Part 1: Control algorithms, Bell Syst. Tech. J. 50(5), May 1971.Google Scholar
  17. 17.
    C. L. Wu and T. Y. Feng, Universality of the shuffle-exchange network, IEEE Trans. Comp. 30(5), May 1981.Google Scholar
  18. 18.
    K. E. Batcher, Sorting networks and their applications, Proc. 1968 Spring Joint Comput. Conf.Google Scholar
  19. 19.
    J. S. Turner, Design of a broadcast packet switching network, IEEE Trans. Commun. 36(6), June 1988.Google Scholar
  20. 20.
    T. T. Lee, A modular architecture for very large packet switches, IEEE Trans. Commun. 30(7), July 1990.Google Scholar
  21. 21.
    F. Tobagi, T. Kwok, and F. Chiussi, Architectures, performance, and implementation of the tandem Banyan fast packet switch, IEEE J. Selected Areas Commun. SAC-9(8), Oct. 1991.Google Scholar
  22. 22.
    S. Shaikh, M. Schwartz, and T. Szymanski, A comparison of the Shufflenet and Banyan topologies for broadband packet switches, IEEE INFOCOM ′90, Conf. Proc.Google Scholar
  23. 23.
    R. Melen and J. S. Turner, Nonblocking multirate networks, SIAM J. Comput. 18(2), April 1989.Google Scholar
  24. 24.
    A. S. Acampora and B. R. Davis, Efficient utilization of satellite transponders via time-divison multibeam scanning, Bell Syst. Tech. J. 57(8), Oct. 1978.Google Scholar
  25. 25.
    I. S. Gopal, G. Bongiovanni, M. A. Bonucelli, D. Tang, and C. K. Wong, Optimal switching algorithm for a SS/TDMA system with variable bandwidth beams, IEEE Trans. Commun. COM-30(10), Oct. 1982.Google Scholar
  26. 26.
    I. S. Gopal, D. Coppersmith, and C. K. Wong, Minimizing packet waiting time in a multibeam satellite system, IEEE Trans. Commun. COM-30(2), Feb. 1982.Google Scholar
  27. 27.
    Giacopelli et al., Sunshine: A high performance self-routing broadband packet switch architecture, IEEE J. Selected Areas Commun. SAC-9(8), Oct. 1991.Google Scholar
  28. 28.
    A Pattavina, Nonblocking architectures for ATM switching, IEEE Commun. Mag. 31(2), Feb. 1993.Google Scholar
  29. 29.
    IEEE J. Selected Areas Commun., issue on Large Scale ATM Switching Systems for B-ISDN, 9(8), Oct. 1991.Google Scholar
  30. 30.
    Y. Sakurai, N. Ido, S. Gohara, and N. Endo, Large-scale ATM multistage switching network with shared buffer memory switches, IEEE Commun. Mag. 29(1), Jan. 1991.Google Scholar
  31. 31.
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York, 1965.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Anthony S. Acampora
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations