Electric Transport in Liquid Metals

Part of the Physics of Solids and Liquids book series (PSLI)


A metal is a two-component system of ions of charge Ze and valence electrons, described by the following Hamiltonian:
$$H = {H_{el}} + {H_{ion}} + {H_{el - ion}}$$
$${H_{el}} = \sum\limits_i {\frac{{p_i^2}}{{2m}} + \frac{1}{2}\sum\limits_{i,j} {\frac{{{e^2}}}{{\left| {\left. {{r_i} - {r_j}} \right|} \right.}}} } $$
$${H_{ion}} = \sum\limits_n {\frac{{P_n^2}}{{2{M_n}}}} + \frac{1}{2}\sum\limits_{n,m} {\frac{{{{(Ze)}^2}}}{{\left| {\left. {{R_n} - {R_m}} \right|} \right.}}} $$
$${H_{el - ion}} = \sum\limits_{i,n} {V({r_i} - {R_n})} + \sum\limits_{i,n} {J({r_i} - {R_n}){\sigma _i} \cdot {S_n}} $$
Here and in the following P n , R n , and S n denote ionic momenta, positions, and spins, respectively, while position, momentum, and spin of the i th electron are denoted by r i , p i , and σ i . Before specifying the electron-ion interaction in more detail, we shall outline the aims of a comprehensive theory of liquid metals.


Liquid Metal Dynamical Structure Hall Coefficient Simple Metal Static Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. W. Ashcroft, in: Liquid Metals, 1976, p. 39, Conf. Ser. No. 30, The Institute of Physics, Bristol and London (1976). The appendix of this article contains a useful summary of relations between structure factors and pair correlation functions.Google Scholar
  2. 2.
    Note that there are two forms of ε(q)that differ in the way exchange and correlation terms enter. One is used for screening bare pseudopotentials in electric transport, while the calculation of ionic pair potentials requires the other one. For current approximations for exchange and correlation, see M. Shimoji, Liquid Metals,p. 107, Academic Press, New York (1977).Google Scholar
  3. 3.
    F. C. Herman and S. Skillman, Atomic Structure Calculations, Prentice-Hall, New Jersey (1963).Google Scholar
  4. 4.
    L. F. Mattheiss, Phys. Rev. A, 133, 3199 (1964).Google Scholar
  5. 5.
    V. L. Moruzzi, J. F. Janak, and A. R. Williams, Calculated Electronic Properties of Metals, Pergamon Press, New York (1978).Google Scholar
  6. 6.
    There may, however, be strong changes when this short-range structure changes, e.g., solid tetrahedrally coordinated Si or Ge is a semiconductor, while liquid Si or Ge is a metal with a much larger number of nearest neighbors.Google Scholar
  7. 7.
    H.-J. Güntherodt, P. Oelhafen, R. Lapka, H. U. Künzi, G. Indlekofer, J. Krieg, T. Laubscher, H. Rudin, U. Gubler, F. Rösel, K. P. Ackermann, B. Delley, M. Fischer, F. Greuter, E. Hauser, M. Liard, M. Müller, J. Kübler, K. H. Bennemann, and C. F. Hague, J. Phys. (Paris) C8 41, 381 (1980).CrossRefGoogle Scholar
  8. 8.
    See, for example, A. Bansil, H. K. Peterson, and L. Schwartz, in: Liquid Metals, 1976, p. 313, Conf. Ser. No. 30, The Institute of Physics, Bristol and London (1976).Google Scholar
  9. 9.
    J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1960).Google Scholar
  10. 10.
    H. N. Dunleavy and W. Jones, J. Phys. F 8, 1477 (1978).CrossRefGoogle Scholar
  11. 11.
    G. Baym, Phys. Rev. A 135, 1691 (1964).Google Scholar
  12. 12.
    M. Parrinello, N. H. March, and M. P. Tosi, Nuovo Cimento B 39, 233 (1977).CrossRefGoogle Scholar
  13. 13.
    J. Rubio, J. Phys. C 2, 288 (1969)CrossRefGoogle Scholar
  14. N. W. Ashcroft and W. Schaich, Phys. Rev. B 1, 1370 (1970).CrossRefGoogle Scholar
  15. 14.
    R. J. Elliott, J. A. Krumhansl, and P. L. Leath, Rev. Mod. Phys. 46, 465 (1974).CrossRefGoogle Scholar
  16. 15.
    For a recent review of electric transport in glassy metals, see P. J. Cote and L. V. Meisel, in: Glassy Metals I, Vol. 46 of Topics in Applied Physics p. 141, Springer-Verlag, Berlin (1981).Google Scholar
  17. 16.
    See, e.g., F. Yonezawa, J. Phys. (Paris) C8 41, 447 (1980).Google Scholar
  18. 17.
    S. Wang and S. K. Lai, J. Phys. F 10, 2717 (1980).Google Scholar
  19. 18.
    N. W. Ashcroft and D. C. Langreth, Phys. Rev. 159, 500 (1967).CrossRefGoogle Scholar
  20. 19.
    O. Dreirach, R. Evans, H.-J. Güntherodt, and H.-U. Künzi, J. Phys. F 2, 709 (1972).CrossRefGoogle Scholar
  21. 20.
    F. J. Pinski, P. B. Allen, and W. H. Butler, Phys. Rev. Lett. 41, 431 (1978).CrossRefGoogle Scholar
  22. 21.
    V. K. Ratti and R. Evans, J. Phys. F 3, L238 (1973).CrossRefGoogle Scholar
  23. 22.
    R. Evans and A. Jain, Phys. Earth Planet. Inter. 6, 141 (1972).CrossRefGoogle Scholar
  24. 23.
    H.-J. Güntherodt, H. U. Künzi, M. Liard, R. Müller, R. Oberle, and H. Rudin, in: Liquid Metals, 1976, p. 342, Conf. Ser. No. 30, The Institute of Physics, Bristol and London (1976).Google Scholar
  25. 24.
    E. Esposito, H. Ehrenreich, and C. D. Gelatt Jr., Phys. Rev. B 18, 3913 (1978).CrossRefGoogle Scholar
  26. 25.
    B. Delley et al. J. Phys. F 9, 505 (1979).CrossRefGoogle Scholar
  27. 26.
    Y. Waseda, A. Jain, and S. Tamaki, J. Phys. F 8, 125 (1978).CrossRefGoogle Scholar
  28. 27.
    B. Delley and H. Beck, J. Phys. F 9, 517 (1979).CrossRefGoogle Scholar
  29. 28.
    J. C. Duthie and D. G. Pettifor, Phys. Rev. Lett. 38, 564 (1977).CrossRefGoogle Scholar
  30. 29.
    B. Delley and H. Beck, J. Phys. F 9, 2231 (1979).CrossRefGoogle Scholar
  31. 30.
    J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).CrossRefGoogle Scholar
  32. 31.
    S. R. Nagel, Phys. Rev. Lett. 41, 990 (1978).CrossRefGoogle Scholar
  33. 32.
    N. F. Mott, Philos. Mag. 26, 1249 (1972).CrossRefGoogle Scholar
  34. 33.
    J. L. Black, in: Glassy Metals I, Vol. 46 of Topics in Applied Physics, p. 167, Springer-Verlag, Berlin (1981).Google Scholar
  35. 34.
    J. M. Ziman, Models of Disorder, Cambridge University Press (1979).Google Scholar
  36. 35.
    E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).CrossRefGoogle Scholar
  37. 36.
    Y. Imry, Phys. Rev. Lett. 44, 469 (1980).CrossRefGoogle Scholar
  38. 37.
    S. M. Girvin and M. Jonson, Phys. Rev. B 22, 3583 (1980).CrossRefGoogle Scholar
  39. 38.
    The main features of this theory can be found in W. Götze, Philos. Mag., Ser. B 43 219 (1981), which contains references to previous publications.Google Scholar
  40. 39.
    D. Belitz and W. Götze, Philos. Mag. Ser. B 43, 517 (1981).CrossRefGoogle Scholar
  41. 40.
    D. Belitz and W. Götze, preprint (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • H. Beck
    • 1
  1. 1.Institut de PhysiqueUniversité de NeuchâtelNeuchâtelSwitzerland

Personalised recommendations