Skip to main content

Structure and Dynamics of Charged Fluids

  • Chapter

Part of the book series: Physics of Solids and Liquids ((PSLI))

Abstract

“Charged fluids” is a generic name for a vast variety of gaseous or liquid systems containing charged particles like positive or negative ions and radicals, charged polymers, and free electrons. Systems of charged particles occur in many fields of physics and chemistry, ranging from astrophysics and plasma physics to electrochemistry and colloid science. The common link between all these widely different systems is the predominance of long-range Coulomb interactions between the charged particles that confer to these systems a certain number of characteristic collective properties not found in fluids of neutral atoms or molecules. The present chapter is devoted to an overview of the essential structural and dynamic properties of some charged fluids of importance in condensed matter and chemical physics. This does exclude the very important field of plasma physics, although contact will be made with concepts as well as simple models borrowed from that field. We shall in fact be essentially concerned with ionic liquids and solutions, but some reference will be made to more “exotic” systems like macromolecular ionic systems and two-dimensional Coulomb fluids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Debye and E. Mickel, Z. Phys. 24, 185, 305 (1923).

    CAS  Google Scholar 

  2. J. P. Hansen, J. Phys. C 14, L-151 (1981).

    Article  CAS  Google Scholar 

  3. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London (1976).

    Google Scholar 

  4. J. P. Hansen, G. M. Torrie and P. Vieillefosse, Phys. Rev. A 16, 2153 (1977).

    Article  CAS  Google Scholar 

  5. F. G. Edwards, J. E. Enderby, R. A. Rowe, and D. I. Page, J. Phys. C 8, 3483 (1975).

    Article  CAS  Google Scholar 

  6. E. M. Adams, I. R. McDonald, and K. Singer, Proc. R. Soc. London, Ser. A 357, 37 (1977).

    Article  CAS  Google Scholar 

  7. J. E. Enderby, D. M. North, and P. A. Egelstaff, Philos. Mag. 14, 961 (1966).

    Article  CAS  Google Scholar 

  8. L. V. Woodcock and K. Singer, Trans. Faraday Soc. 67, 12 (1971).

    Article  CAS  Google Scholar 

  9. J. P. Hansen and I. R. McDonald, Phys. Rev. A 11, 2111 (1975).

    Article  Google Scholar 

  10. A. B. Bhatia and D. E. Thornton, Phys. Rev. A 2, 3004 (1970).

    Article  Google Scholar 

  11. R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

    Article  CAS  Google Scholar 

  12. M. Parrinello and M. P. Tosi, Riv. Nuovo Cimento 2, No. 6 (1979).

    Google Scholar 

  13. J. G. Kirkwood and F. Buff, J. Chem. Phys. 19, 774 (1951).

    Article  CAS  Google Scholar 

  14. P. Vieillefosse and J. P. Hansen, Phys. Rev. A 12, 1106 (1975).

    Article  Google Scholar 

  15. See, e.g., D. Pines and Ph. Nozières, Theory of Quantum Fluids, Benjamin, New York (1966).

    Google Scholar 

  16. G. Stell, in: Statistical Mechanics, Part A ( B. J. Berne, ed.), Plenum Press, New York (1977).

    Google Scholar 

  17. E. Salpeter, Aust. J. Phys. 7, 353 (1954).

    Article  Google Scholar 

  18. P. Vieillefosse, J. Phys. (Paris) 42, 723 (1981).

    Article  CAS  Google Scholar 

  19. M. Baus and J. P. Hansen, Physics Reports 59, 1 (1980).

    Article  CAS  Google Scholar 

  20. J. C. Rasaiah, D. N. Card, and J. P. Valleau, J. Chem. Phys. 56, 248 (1972).

    Article  CAS  Google Scholar 

  21. G. M. Abernethy, M. Dixon, and M. J. Gillan, Phil. Mag. B 43, 1113 (1981).

    Article  CAS  Google Scholar 

  22. B. Larsen, J. Chem. Phys. 68, 4511 (1978).

    Article  CAS  Google Scholar 

  23. Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).

    Article  CAS  Google Scholar 

  24. H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982).

    Article  Google Scholar 

  25. E. Waisman and J. Lebowitz, J. Chem. Phys. 56, 3086, 3093 (1972).

    Article  CAS  Google Scholar 

  26. L. Blum, Mol. Phys. 30, 1529 (1975)

    Article  CAS  Google Scholar 

  27. L. Blum and J. S. HSye, J. Phys. Chem. 81, 1311 (1977).

    Article  CAS  Google Scholar 

  28. M. C. Abramo, C. Caccamo, G. Pizzimenti, M. Parrinello, and M. P. Tosi, J. Chem. Phys. 68, 2889 (1978).

    Article  CAS  Google Scholar 

  29. J. S. Hlye and G. Stell, J. Chem. Phys. 67, 524 (1977).

    Article  Google Scholar 

  30. M. C. Abramo, C. Caccamo, and G. Pizzimenti, Lettere al N. Cim. 30, 297 (1981).

    Article  CAS  Google Scholar 

  31. P. Martin, in: Many-Body Physics ( C. De Witt and R. Balian, eds.), Gordon and Breach, New York (1967).

    Google Scholar 

  32. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Benjamin, Reading, MA (1975).

    Google Scholar 

  33. J. P. Hansen, in: Microscopic Structure and Dynamics of Liquids ( J. Dupuy and A. J. Dianoux, eds.), Plenum Press, New York (1978).

    Google Scholar 

  34. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    Article  Google Scholar 

  35. H. Mori, Prog. Theor. Phys. 34, 399 (1965).

    Article  Google Scholar 

  36. See, e.g., T. E. Faber, An Introduction to the Theory of Liquid Metals, Cambridge University Press (1972).

    Google Scholar 

  37. H. Minoo, C. Deutsch, and J. P. Hansen, J. Phys. (Paris), Lett. 38, L191 (1977).

    Article  Google Scholar 

  38. G. Jacucci and I. R. McDonald, Physica A 80, 607 (1975).

    Article  Google Scholar 

  39. P. C. Martin, Phys. Rev. 161, 143 (1967).

    Article  CAS  Google Scholar 

  40. P. V. Giaquinta, M. Parrinello, and M. P. Tosi, Phys. Chem. Liq. 5, 305 (1976).

    Article  CAS  Google Scholar 

  41. W. L. Slattery, G. D. Doolen, and H. E. De Witt, Phys. Rev. A 21, 2087 (1980).

    Article  CAS  Google Scholar 

  42. J. P. Hansen, I. R. McDonald, and E. L. Pollock, Phys. Rev. A 11, 1025 (1975).

    Article  Google Scholar 

  43. See M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980) for references; a very recent approach is that of T. Gaskell, J. Phys. C 15, 1601 (1982).

    Google Scholar 

  44. J. Wallenborn and M. Baus, Phys. Rev. A 18, 1737 (1978).

    Article  Google Scholar 

  45. S. W. Lovesey, J. Phys. C 4, 3057 (1971).

    Article  CAS  Google Scholar 

  46. H. M. Van Horn, Phys. Today (January 1979).

    Google Scholar 

  47. S. Galam and J. P. Hansen, Phys. Rev. A 14, 816 (1976).

    Article  Google Scholar 

  48. M. P. Tosi, in Electron Correlations in Solids, Molecules and Atoms (J. Devreese and F. Brosens, eds.) Plenum, 1983.

    Google Scholar 

  49. M. J. Huijben and W. Van der Lugt, in: Liquid Metals, 1976, p. 141, Conférence séries N° 30, The Institute of Physics, Bristol (1977).

    Google Scholar 

  50. N. W. Ashcroft, J. Phys. C 1, 232 (1968).

    Article  Google Scholar 

  51. D. Bohm and T. Stayer, Phys. Rev. 84, 836 (1951).

    Article  CAS  Google Scholar 

  52. J. C. Brown, P. N. Pusey, J. W. Goodwin, and R. H. Ottenvill, J. Phys. A 8, 664 (1975).

    Article  CAS  Google Scholar 

  53. P. Pieranski, in: Physics of Defects, Les Houches Session XXXV (R. Balian et al.,eds.), North-Holland, Amsterdam (1981).

    Google Scholar 

  54. E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).

    Google Scholar 

  55. See, e.g., J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).

    Article  Google Scholar 

  56. J. P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).

    Article  CAS  Google Scholar 

  57. See, e.g., W. Hess and R. Klein, Adv. in Phys. 32 173 (1983).

    Google Scholar 

  58. M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25 45 (1964).

    Article  CAS  Google Scholar 

  59. M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).

    Article  CAS  Google Scholar 

  60. J. E. Enderby and G. W. Neilson, Adv. Phys. 29, 323 (1980).

    Article  CAS  Google Scholar 

  61. J. Bosse and T. Munakata, Phys. Rev. A 24, 2261 (1981).

    Article  CAS  Google Scholar 

  62. J. R. D. Copley and A. Rahman, Phys. Rev. A 13, 2276 (1976).

    Article  CAS  Google Scholar 

  63. G. Jacucci, I. R. McDonald, and A. Rahman, Phys. Rev. A 13, 1581 (1976).

    Article  CAS  Google Scholar 

  64. J. R. D. Copley and G. Dolling, J. Phys. C 11, 1259 (1978).

    Article  CAS  Google Scholar 

  65. L. Blum, Chem. Phys. Lett. 26, 200 (1974).

    Article  CAS  Google Scholar 

  66. S. A. Adelman and J. M. Deutch, J. Chem. Phys. 60, 3935 (1974).

    Article  CAS  Google Scholar 

  67. M. S. Wertheim, Mol. Phys. 25, 211 (1973).

    Article  CAS  Google Scholar 

  68. D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham, J. Chem. Phys. 70, 2946 (1979).

    Article  CAS  Google Scholar 

  69. D. Levesque, J. J. Weis, and G. N. Patey, J. Chem. Phys. 72, 1887 (1980).

    Article  CAS  Google Scholar 

  70. C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).

    Article  CAS  Google Scholar 

  71. H. Totsuji and H. Kaleya, Phys. Rev. A 22, 1220 (1980).

    Article  CAS  Google Scholar 

  72. J. P. Hansen, D. Levesque, and J. J. Weis, Phys. Rev. Lett. 43, 979 (1979).

    Article  CAS  Google Scholar 

  73. P. Carini and G. Kalman, Phys. Lett. 105A, 229 (1984).

    Article  Google Scholar 

  74. See, however, R. L. McGreevy, E. W. J. Mitchell and F. M. A. Margaca, J. Phys. C 17, 775 (1984).

    Article  CAS  Google Scholar 

  75. For a recent review, see J. P. Hansen, J. Phys. (Paris) 45, C7–97 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, J.P. (1985). Structure and Dynamics of Charged Fluids. In: March, N.H., Street, R.A., Tosi, M.P. (eds) Amorphous Solids and the Liquid State. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9156-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9156-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9158-7

  • Online ISBN: 978-1-4757-9156-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics